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CHAPTER 1
AN INTRODUCTION TO FLOATING POINT

1.1 WHAT IS A FLOATING POINT NUMBER?

The numbers we encounter every day, such as 12, 34.56, 0.0789,
elc,, are known as fixed point numbers because the decimal point
isin a fixed position. Such numbers are fairly closely matched in
magnitude and within about ten orders of magnitude from unity.
Examples of such numbers are found in bank accounts, unit
prices of store items and paychecks.

In scientific applications, the numbers encountered can be very
large. Avogadro's number expressed in fixed point notation is
approximately 602,250,000,000,000,000,000,000. A scientist
may also use Planck’s constant which would be approximately
0.000000000000000000000000006626196 erg sec in fixed point
notation, These examples demonstrate the undesirability of writ-
ing fixed point notation and why most scientists use the concise
finating point notation to represent numbers such as Avogadro's
number and Planck's constant.

When a scientist writes the value of Avogadro’s number, he writes
6.0225 x 1023, Similarly he would express Planck's constant as
6.626196 x 10—27 erg sec.
As we can observe, the number +6.0225 x 1023, consists of 4
parts:
Sign -
The sign of the number (+ or —). The plus sign is usually
assumed when no sign is shown.
Mantissa —
Sometimes also known as the fraction. The mantissa describes
the actual number. In the example, the mantissa is 6.0225.
Exponent —
Sometimes also known as the characteristic. The exponent
describes the order of magnitude of the number. In the exam-
ple, the exponent is 23.
Base -
Sometimes also known as the radix. The base is the number
base in which the exponent is raised. In the example, the base
is10.

The parts of a floating point number can then be represented by
the following equation:

F=(-1)SxMxBE
where

F = floating peint number

S = sign of the floating point number, so that S = 0 if the
number is positive and S = 1if the number is negative

M = mantissa of the floating point number

B = base of the floating point number

E = exponent of the floating point number

1.2 WHEN SHOULD FLOATING POINT BE USED?

Although floating point numbers are useful when numbers of very
different magnitude are used, they should not be used indiscrim-
inately. There is an inherent loss of accuracy and increased
execution time for floating point computations on most compu-
ters. Floating point computation suffers the greatest loss of ac-
curacy when two numbers of closely matched magnitude are
subtracted from each other or two numbers of opposite sign but
almost equal magnitude are added together. Therefore, the As-
sociative Law in arithmetic

A+B+C)=(A+B)+C

does not always hold true if B is of opposite sign to A and C and
very similar in magnilude to either A or C.

In most computers, hardware lloating point multiply and divide
takes approximately the same amount of execution time as
hardware fixed point multiply and divide, but hardware floating
point add and subtract usually takes considerably more time then
hardware fixed point add and subtract. If the computer lacks
floating point hardware, all floating point computations will con-
sume more CPU time than fixed point computations.



CHAPTER 2
FLOATING POINT FORMATS

2.1 COMMONLY USED FLOATING POINT BASES

The following three number bases are commonly used in floating
paint number systems:

1) Binary — The base is 2.
2) Binary Code Decimal (BCD) — The base is 10.
3) Hexadecimal — The base is 16.

2.2 COMPARISONS OF THE THREE

COMMONLY USED BASES
Binary —
The main advantages of the binary floating point format are
relative ease of hardware implementation and maximum ac-
curacy lor a given number of bits. On the negative side, the
conversion of an ASCII (American Standard Code for Informa-
fion Interchange) decimal string to and from a binary floating
number is difficult and time consuming. In commercial applica-
tions where input and output are always decimal character
strings, the binary floating point numbers will have an inherent
rounding error because numbers such as 0.1yp cannot be
represented exactly with a binary floating point number.

BCD —

The advantages and disadvantages of the BCD floating point
numbers are just the opposite of the binary floating point num-
bers. BCD floating paint is most commeonly used in commercial
applications where the computations invalved are usually sim-
ple and input/output is always in the form of decimal ASCII
strings.

Hexadecimal —

The hexadecimal floating point numbers have similar advan-
tages and disadvantages as the binary floating point when
compared with the BCD floating point format. When the same
number of bits of exponent and mantissa are used, the
hexadecimal floating point gives a considerably larger dynamic
range than the binary floating point format. For example, for a
7-bit exponent, the largest positive number that can be rep-
resenled in the hexadecimal floating point is approximately
1664 (approximately 1.16 x 1077, The smallest non-zero posi-
tive number that can be represented is 16-64 (approximately
8.64 x 10~ 78). By comparison, the largestand smallest positive
numbers that can be represented in a 7-bit exponent binary
system are approximately 1.84 x 1019 and 5.42 x 10-20 re-
spectively.

An advantage of the hexadecimal floating point system over the
binary point system is that during normalization and denormali-
zation of the floating point numbers the hexadecimal system
requires far fewer shifts compared with the binary system, be-
cause the hexadecimal system shifts four places at a time and
most binary systems shift only one place at a time. For more
sophisticated systems where normalization and denormalization
canbe done in one operation, this advantage does not exist. Most
present-day systems do not fall in this category.

This disadvantage of the hexadecimal system is the loss of preci-
sion as compared with the binary system when the number of
mantissa bits are the same. Since the three most significant bits
could be zero when the first digit of the hexadecimal is a 1, this
leads to a loss of 3 bits of accuracy in the worst case. However,
assuming uniform distribution of numbers. the average loss of
accuracy is only 11/15 bits. The above comparison assumes the
binary system does not use an “implied 1" (Section 2.4). The loss
of accuracy in a hexadecimal system compared with a binary
systern using an “implied 1" and same number of bits of mantissa
is 4 bits in the worst case and 1 and 11/15 bits on the average,

2.3 DIFFERENT EXPONENT FORMATS

Two types of exponents used in floating point number systems
are the biased exponent and the unbiased exponent. An un-
biased exponent has a two's complement number. An exponent
said to be biased by N (or excess N notation), means that the
coded exponent is formed by adding N to the actual exponent in
two's complement form. Any overflow generated from the addi-
tion is ignored. The result becomes an unsigned number. Most
common floating point systems use a biased exponent. Biased
exponents are used to simplify floating point hardware. During
floating point computations, arithmetic operations such as add
and subtract need lo be performed on the exponents of the
operands. If a biased exponent is used, the arithmetic logic unit
(ALU) needs only to perform unsigned arithmetic. If an unbiased
exponent is used, the ALU must perform two's complement
arithmetic, and overflow conditions are mare difficult to detect.

2.4 “IMPLIED 1"

Most floating point numbers must always be presented fo the
computer in “normalized” form (i.e., the most significant digit of
the mantissa is always non-zero, except if the number is zero).
For a binary floating point system, this would mean the leading
binary bit of the mantissa is always 1 (except when the number is
zero), In some floating paint number systems, such as Am8512
format, this 1 bit is not represented on input or outpul 1o the
floating point processor. The exira bil can be used for ane more
bit of precision or one more bit of exponent range.



CHAPTER 3
FLOATING POINT ARITHMETIC

3.1 INTRODUCTION

This chapter deseribes the basic principles of performing arith-
metic with floating point numbers. First, the internal mechanism of
floating point is analyzed. The following discussion uses the
Am9512 single precision format although the discussion can
apply to other formats with only minor medifications. The
operands are assumed to be located in a stack. The lirst operand
iscalled TOS (top of stackj and the second operand is called NOS
(next on stack).

3.2 FLOATING POINT ADD AND SUBTRACT

Floating point add and subtract use essentially the same al-
gorithm. The only difference is thal floating point subtract
changes the sign of the floaling point number at top of stack and
then perfarms the floating point add.

The following is a step-by-step description of a floating point add
algorithm (Figure 3.1):

Unpack TOS and NOS.

. The exponent of TOS is compared to the expenent of NOS.
If the exponents are equal, go to step 1.

Right-shift the mantissa of the number with the smaller expo-
nent.

Increment the smaller exponent and go to step b.

Set sign of result to sign of larger number.

. Set exponent of result to exponent of larger number.

It sign of the two numbers are not equal, go to m,

Add mantissas.

Right-shift resultant mantissa by 1 and increment exponent of
result by 1.

coop

—-za o

(T05) =
SIGN (NOS)?.

UMPACK
TOS & NOS

EXP (T0S) =
EXP (NOS?.

EXP (T0S)
EXP (NOS)?.

N

SIGN = SIGH (TOS)
MAN (TOS) + MAN (NOS)

MAN (TOS)
MAN (NOS]
(]

MAN (TOS)

—m

RIGHT SHIFT J

EXP {TOS)
EXP (TOS) + 1

N
ADDITION
ROUNDING

AIGHT SHIFT
MAN (NOS)

4P (NOS)
EXP (NOS) + 1

SET
OVERFLOW
STATUS

SIGH = SIGN (NOS)

MAN =
MAN (NOS) — MAN [TOS)|

SIGN = SIGN (TO%)
MAN (HOS)|

MAN (T0S)

N MS8 OF
MAN = 17
v
LEFTSHIFT
MAN

SUBTRACTION
ROUNDING

00815C-1

Figure 3.1. Floating Point Add/Subtract Flowchart
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Ifthe most significant bit (MSB) of exponent changes from 1 to
0 as a result of the increment, set overflow status.
Round if necessary and exit,

. Subtract smaller mantissa from larger mantissa.

Left-shift mantissa and decrement exponent of result.

If MSB of exponent changes from 0 to 1 as a result of the
decrement, set underflow status and exit.

If the MSB of the resultant mantissa = 0, goto n.

Aound if necessary and exit.

3.3 FLOATING POINT MULTIPLY

Floating paint multiply basically involves the addition of the expo-
nents and multiplication of the mantissas. The following is a
step-by-step description of a fioating point multiplication al-
gorithm (Figure 3.2):

a.
b.
c.

Check if TOS or NOS = 0.
\f either TOS or NOS = 0, Sel result to 0 and exit.
Unpack TOS and NOS.

. Convert EXP (TOS) and EXP (NOS) to unbiased form:

EXP (TOS) = EXP (TOS) - 12730
EXP (NOS) = EXP (NOS) — 12739

. Add exponents:

EXP = EXP (TOS) + EXP (NOS)
If MSB of EXP (TOS) = MSB of EXP (NOS) = 0 and MSB of
EXP = 1, then set overflow status and exit.
If MSB of EXP (TOS) = MSB of EXP (NOS) = 1 and MSB of
EXP = 0, then set underflow status and exit

. Convert exponent back to biased form:

EXP = EXP + 127y
I sign of TOS = sign of NOS, set sign of resultto 0: otherwise,
set sign of result to 1.
Multiply mantissas.
1f MSB of resultant mantissa = 1, right-shift mantissa by 1 and
increment expanent of resultant.
If MSB of exponent changes from 1 to 0 as a result of the
increment, set overflow status.

. Round if necessary and exit.

=

SIGN =
SIGN (TOS) (B SIGN (NOS)
MAN =
MAN (TOS)*MAN (NOS)

(]
EXP
EXP + 121

MOS-206

Figure 3.2. Floating Point Muitiply Flowchart
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3.4. FLOATING POINT DIVIDE

The floating point divide basically involves the subtraction of
exponents and the division of mantissas. The following is a step-
by-step descripticn of a division algorithm (Figure 3.3);

. TMSB of EXP (NOS) = 1, MSB of EXP (TOS) = 0, and MSB
of EXP = 0, then set underflow status and exit.
h. Add bias to exponent of result:
EXP = EXP + 1279
I I sign of TOS = sign of NOS, set sign of result to 0, else set

e

a IfTOS = 0, set divide exception error and exit. sign of result to 1.
b. fNOS = 0, set result to 0 and exit. |- Divide mantissa of NOS by mantissa of TOS
¢. Unpack TOS and NOS. k. If MSB = 0, left-shift mantissa and decrement exponent of
d. Convert EXP (TOS) and EXP (NOS) to unbiased form: resultant, or else go to .
EXP (TOS) = EXP (TOS) — 12759 I If MSB of exponent changes from 0 to 1 as a result of the
EXP (NOS) = EXP (NOS) - 127, decrement, set underflow status.
e. Subtract exponent of TOS from exponent of NOS: m. Gotok.
EXP = EXP (NOS) - EXP (TOS) n. Round if necessary and exit,
f. IfMSB of EXP (NOS) = 0, MSB of EXP (TOS) = 1, and MSB
of EXP = 1, then set overflow status and exit.
SIGN [TOS) (3) SIGN (NOS)
SET DIVIDE MAN
—_
BET DIVISION I
oo
exi
wos.or |

Figure 3.3. Floating Point Divide Flowchart
5




CHAPTER 4
DATA CONVERSION

4.1 INTRODUCTION

This chapter describes how to convert fixed point binary integer to
floating point, floating point to fixed point binary integer, decimal
ASCII (American Standard Code for Information Interchange)
string to floating point and floating point to decimal ASCII string.
These conversion methods are useful because few real-world
inputs and outputs are in floating point format. When human
interface is involved, the real-world interface is usually a decimal
ASCII string. If the data are collected through some automatic
means such as an A/D converter, counters, etc., the input is
usually in the form of fixed point binary or BCD integers. In this
chapter, the floating point format is assumed to be the Am8512
single precision format.

4.2 BINARY FIXED POINT TO FLOATING POINT

The input to this routine is assumed 1o be a 32-bit two's comple-
ment number and the output is a binary floating point number of

Amg512 formal. Figure 4.1 shows the flow chart of such a pro-
gram and Figure 4.2 shows an Am90B0A assembly language
subroutine that accomplishes this task.

The data format used in the assembly language conversion is as
follows:

Fixed Point —

Two's complement number that occupies 4 consecutive mem-
ory locations with the most significant byte residing in low
memory. To address the number, the pointer points to the low
address.

Floating Point —
Am9512 floating point format that occupies 4 consecutive
memory locations. The sign and 7 bits of the exponent resides
inthe low address. To address the number, the pointer pointsto
the low address.

FLOAT = FIX
EXP = 15049
SIGN = 0

BT
= SIGH

SIGN = 1
FLOAT = —FLOAT

MOS-639

Figure 4.1, Fix to Float Conversion Flowchart
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LOC OFJ LINE SOURCE STATEMENT
1.4 PAGEWIDTE (8@) MACROFILE
23
34
£
5§ SUBROUTINES TO CONVERT FIX TO FLOAT
6 i AND FLOAT TO FIX POINT FORMATS
7
8 i
9 i
12 NAME CONVT
11 5
12 PUBLIC FXTOFL,FLTOFX
12 j
14 EXTRN QMOVE,QTEST,QNEG,QLSL,QLSR,QCLR
15 §
1€ CSEG PAGE
17
18 j FIX TO FLOAT CONVERSION ROUTINE
18 ; TO CALL THE PROGRAM,
20 ; HL = POINTER TO TEE FIXED POINT NUMBER
21 § DE = POINTER TO TEE FLOATING POINT NUMBER
22 ; ACC AND PSW ARE ALTERED BY THE SUBROUTINE
23 ; ALL OTHER REGISTERS ARE NOT DISTURBED
24
9¢09a C5 25 FXTOFL: PUSH B jSAVE BC REGISTER PAIR
oee1 D5 2€ PUSE D $SAVE DESTINATION POINTER
0@@2 ES 27 PUSE H iSAVE SOURCE POINTER
@@a2 cDheepe E 2e CALL QMOVE FCOPY FIXED PT NO. INTO FLOAT
2006 EB 29 XCHG iPUT FLOAT POINTER IN HL
gee? Cpeeee E e CALL QTEST 7 TEST IF NO. = @7
@e@a CA4le@ C 31 JZ RETN FYES - JUMP
32 3
33 THE NUMBER IS NOT ZERO, INIT. SIGN AND EXP
34 3
200D B€02 35 MYI B,0 ;B REG = SIGN
200F BESE 3E MYI C,23+127 iC REG = EXPONENT = BIAS
37§
38 i TEST IF TEE NUMBER IS NEGATIVE
39 i
@011 7E 40 MOV A,M FGET MSE FROM FLOAT
ae12 B7 41 ORA A iSET FLAGS
2013 F21F@0 C 42 JP FXie iJUMP IF NO. IS POSITIVE
43
44 THE FIXED POINT NUMBER IS NEGATIVE
45 ; NEGATE NUMBER AND SET SIGN
4€ ;
8016 2680 47 “¥1 B,B@H ;SET SIGN TO B@H
2e18 Ccheeoe E 48 CALL QNEG FNEGATE NUMBER IN FLOAT
45
50 ; TEST IF MOCST SIGNIFICANT BYTE OF FLOAT = @
51 j
@@1E 7E 52 Frie: MOV A,M iGET MSB OF FLOAT
2@1C B7 53 ORA A i SET FLAGS
@210 Chzced C 54 JZ FX20 FJUMP IF MSBE = @

Figure 4.2. Float to Fix Conversion Flowchart
7




Loc

0BJ

@eze oC

Bo21

cpeeee

@024 7E

2025
2826
2@2s

aez2c
0ez2D
@0zE
0@2F
2830
2831
0034
0835
2038

6@3B
2e3C
@O3E
Bo3F
2240
2041
o4z
ee44
2045

0246
2047
2048
0049
@@4B
@04C

@04L
P04E
204F
2858

B7
czzeee
23209

crocee
C32ree

1A
E67F
1z
79
oF
4F
EE8Y
EB
BE

T
79
E67F

B0
77

E1

C1
ce

oo

b

FX15:

rafs s e

XZ@:

FX25:

Fxj e e

i

SCURCE STATEMENT

MSB NOT ZERC, RIGHT SHIFT REQUIRED

INE C jINC. EXP BT 1

CALL QLSR 3LOGICAL SHIFT RIGHT OF FLOAT
MOV A LM FTEST IF MSE = @

ORA A i SET FLAGS

JNZ FX15 iNOT ZERQ, SHIFT SOME MORE
JMP FX30 iZERO, SHIFT COMPLETE

MSE = @, TEST IF LEFT SHIFT REQUIRED

¥CV D,H

MOV E,L $PUT FLOAT POINTER INTO DE
INE D FPOINT TO NEXT MSE OF FLOAT
IDAX D iGET NEXT MSB

ORA A i SET FLAGS

JM FX32 FDONE IF BIT 22 =1

ICR € yDEC. EXP BY 1

CALL QLSL FLOGICAL LEFT SEIFT OF FLOAT
JMP FX25 3TRY AGAIN

SHIFT COMPLETE, MANTISSA FORMET IN FLOAT

LDAX D jGET NEXT MSB OF FLOAT

ANI 7FE ;STRIP OFF HIDDEN "1

STAX D JPUT IT BACK IN MEMORY

MOV 4,C FGET EXPONENT

FRC FROTATE RIGHT

MOY C,A ;PUT ROTATED EXP. BACK IN C
ANI 8@F ; EXTRACT LSB OF EXPONENT
XCHG FPUT NEXT MSE POINTER IN HL
CRA M 5COMBINE MSB OF MANTISSA WITHE EX
MOV M, A

XCEG ;RESTORE POINTERS

MOV A,C SGET ROTATED EXPONENT

ANI 7FE 5STRIP OF LSB

ORA B FCOMBINE EXP WITH SIGN

MOV M, A $SET MSB OF FLOAT

CONVERSION COMPLETE, RETURN TO CALLER

POP H FRESTORE ALL REGISTERS
POP D

POP B

RET RETURN TO CALLER

FLOAT TO FIX CONVERSION ROUTINE

TO CALL THE PROGRAM

HL = POINTER TO THE FLOATING POINT NUMBER
LE = POINTER TO THE FIXED POINT NUMBER

ON RETURN

A REG = 2 AND Z FLAG = 1 IF NO ERROR

A =1 AND Z FLAG = @ IF QVERFLOW ERROR

Figure 4.2, Float to Fix Conversion Flowchart (Cont.)




Loc

2093
2096
gag?

205A

0BJ

C5
D5
E5
Cchoeea
Cheeee
CAAZ@D

2B
3602
79
DETF
FAATOR
FELIF
D2AT@0
D617
CAQAQE
4F
DAS3 @2

cDa@ea
oD

c289ee
C39A0@

Creesd
ec
29300

€ b b

o a o

ao

LINE SOURCE STATEMENT

188 ; OTHER REGISTERS
118 ;

111 FLTOFX: PUSH B
112 PUSE D
113 PUSH B
114 CALL QMOVE
115 CALL QTEST
11€ JZ FL4D
117 j

118

116 ;

12e XCHG

121 MOV A,M
122 ANI 8@H
123 MOV B,A
124 MOV A M
125 RLC

12€ ANI QFEH
127 MOV C,A
128 INX B

129 MOV A .M
130 RLC

131 JNC $+4
132 INR €

133 MOV A,M
134 ORI 8eH
135 MOV M,A
13€ LCX H

127 MVI M, @
138 MOV A,C
138 SUl 127
14@ JM ZERO
141 CPI 31
142 JNC QVFL
143 SUI 23
144 JZ FL3P
145 MOV C,A
146 J¢ FlL2e
147 §

148 COUNT > @, LEFT
149 ;

15¢ FLi@: CALL QLSL
151 DCR C

152 JNZ FLig@
153 JMP FL3@
154 ;

155 j

15€ ;i

157 FL2@: CALL QLSR
158 INE C

159 JNZ Flze
160 ;

161 ; SEIFT COMPLETE,
162 3

163 FL3@: MOV A,E

ARE NOT DISTURBED
FSAVE ALL REGISTERS
7 COPY FLOAT TO FIX

3 TEST IF INPUT NO. = @7
FRETURN IF INPUT IS ZERO

EXTRACT SIGN AND EXPONENT FROM FLOATING PT NO.

#HL POINTS TO FIX

FGET MSB

SEXTRACT SIGN BIT

3SAYE SIGN IN B

5GET MSE AGAIN

FMULTIPLY BY 2

iSTRIP OF LSB

FSAVE IN C

sPOINT TO NEXT MSB

iGET NEXT MSB

iMOVE LSB OF EXP INTO CARRY
iSKIP IF NO CARRY

iPROPAGATE CARRY INTO EXP
GET NEXT MSB

3SET FIDDEN BIT

iRESTORE NEXT MSB

;NOW HI POINTS TO MSB AGAIN
CLEAR MSB

FGET BIASED EXPONENT

iSTRIP OFF BIAS

FEXP < #, RETURN ZERO AS RESULT
;CEECK IF EXP > 31

iJUMP IF NUMBER IS TOO LARGE
i SUBTRACT EXP BY 23

7NO SHIFT REQUIRED, CEECK SIGN
FSAVE SEIFT COUNT

fCOUNT < @, RIGHT SHIFT

SEIFT REQUIRED
iLOGICAL SHIFT LEFT

COUNT < @, RIGET SHIFT REQUIRED

5LOGICAL SEIFT RIGHT

CEECK SIGN AND EXIT
iGET SIGN

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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LOC O0BJ LINE SOURCE STATEMENT

@@SE B7 164 ORA A iSET FLAGS
@0SC FZA200 ¢ 165 JP FL4D iPLUS SIGN, SKIP NEGATION
Q@9F CDeeee E - 166 CALL QNEG iMINUS SIGN, NEGATE NUMBER
167 ;
168 ; CLEAR ERROR FLAG AND RETURN
169 ;
@BAZ AT 170 FL40: XRA A
@0A3 E1 171 FOP H RESTORE ALL REGISTERS
@@A4 D1 172 POP D
@@A5 C1 173 POP B
@OAE C9 174 RET
176 §
176 ZERO FIX POINT NUMBER AND RETURN
7% 5
@0A7 Cheeee E 178 ZERO: CALL QCLR iCLEAR FIX POINT NUMBER
@OAA C3AZ08 C 178 JMP FL4€ s RETURN
18¢
181 & SET OVERFLOW FLAG ANT RETURN
182
@@AD 3EB1 182 OVFL: MYI A,1 i SET A REG
QBAF B7? 184 ORA & 1SET Z FLAG
P2B@ C3A3Z0¢ C 18¢ JMP FL4@+1 fRESTORE REG. AND RETURN
18€ END

PUELIC SYMBOLS
FLTOFX € @@51 FXTOFL C 2@eo

EXTERNAL SYMBOLS
QCLR E 2000 QLSL F @0ed QLSR E @oee QMOVE E @00e
ONEG E goaee QTEST E 0000

USER SYMBOLS

FL1@ C @289 Fl2e C 2093 FL3@ C @@9A FL46 C e@a2
FLTCFX ¢ @@51 FX19 C 021R FX15 ¢ @oz2e FXze C gez2¢
FX25 C @@zF FX38 C 203 FXTOFL C e@es OVFL C @@AD
QCLR E oeee¢ QLSL E 2000 QLSR I oeoe QHMOVE E @020
QONEG E ¢@e0 QTEST E 2009 RETN C 2e4D ZERO C 2@A7

ASSEMBLY COMPLETE, NO ERRORS

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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Lec

oeed
aeel
peez
0ee3
oees
2806
ceev
ees
oees
2e0A

O0BJ

Cc5
D5
E5
2604
7E
12
23

czpsee c

220D E1

BO0E
geer
ee1e

ee1l
oe1z
3013
ae14
2015
2016
2817
o018
2018
ee1A

201B
2e10
@10
BOLE
8217

D1
C1
ce

LINE

N0 -)MWE AN

SCURCE STATEMENT
4 PAGEWIDTE (82) MACROFILE
: & —
H
i CUATRUPLE PRECISION SUBROUTINES
; Te— st
i
PUELIC QMOVE,QTEST,QNEG,QLSL,QLSR,QCLR
i
CSEG
i
i MOVE 4 PYTES POINTED TO BY EL
i T0 4 BYTES POINTEL BY DE
i} M(DE) = M(HL)
i
GMOVE: PUSH B FSAVE ALL REGISTERS
PUSE D
FUSE E
MVI B.4
QM1@: MOV A,M FCET BYTE FROM M(HL)
STAX I $STORE BYTE IN M(DE)
INX H 5BUMP SOURCE POINTER
INX D SEUMP DESTINATION POINTER
ICEK B
JNZ QMie sUNTIL 4 TIMES
FOP E FRESTORE ALL REGISTERS
POP D
FOP B
RET
i
H TEST 4 BYTES POINTED TO HL FOR &
i M(EL) = @7
i
QTEST: FUSE H iSAVE EL
MOV A M fGET FIRST BYTE
INX H
ORA M FCOMEINE WITE 2ND BYTE
INK B
ORA M FCOMBINE WITH 3RD BYTE
INX E
CRA M 7COMBINE WITH 4TH BTTE
FOP H 3 RESTORE HL
RET
i
i NEGATE THE QUAD PRECISION NUMBER POINTED TC BY H
L
3 M{HL) = = M(HL)
i
ONEG: FUSE B iSAVE RBC
INX H MOVE HL T0 LSB
INX E
INX B
MVI E,4

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
n




Loc

po21 B

eez2
pez4
Pez25
Be2€
eazv
@e28
eezB
802C
8e2T

@O2E
@02F
2a3e
8831
2032

0234 B

2035
@836
2037
0038

8839 @5

2e2A
@83L
@03E
203F

2040
2041
284z
2044
2045
8046
ae47
2048

2049 05

204A
204T
@04E
@@4F

2859
2851
0052
@853
2054

D e e e

P

D s wsmr e

SCURCE STATEMENT

ORA
MYI
SBE
MoV

A i CLEAR CARRY
A,
M
M,
CX H
B
QN
i
b

2 iCLEAR A WITHOUT AFFECTING CARRY
A

LCR
JINZ
INX
FOP
RET

1e
sRESTORE HL
#RESTORE EC

LOGICAL SHIFT LEFT 4 BYTES POINTED TO EL
M(EL) = LSL{M(BL))

FUSH B i SAVE BC

INX iMOVE POINTED TO LSE
INX
INX
MV1
ORA
MOV
RAL

i CLEAR CARRY

=

-

LSL1e
+RESTORE HL
+RESTORE BC

Wmowd T b odiimm

LOGICAL RIGHT SEIFT OF 4 BYTES POINTED TO BY HL
M(HL) = LSR(M(EL))

PUSE B iSAVE BC
FUSH H #SAVE HL

MYI B4

CRA A jCLEAR CARRY
MOV A M
RAR

MOV M,A
INX E

DCR B

JNZ QLSR1g@
POP H i RESTORE HL
POP B 7RESTORE BC
RET

CLEAR 4 BYTES POINTED TO BY HL
M(EL) = @

FUSH H
XRA A
MOV M,A
INX B
MOV M,A

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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L0C OBJ LINE
8055 23 128
2056 77 11a
2057 23 111
@ess 77 112
2059 E1 113
eesa cg 114
115 3§
11€
FUELIC SYMECLS
GCLR G o@s5e QLSL C 202EF
QNEG C 2@1E QTEST C @911
EXTEANAL SYMBOLS
USER SYMBOLS
GCLR C @ees52 QLSL C @e2E
GLSR18 C Q@45 Quie C @eesd
UNEG C 2@1B QTEST C 2011
ASSEMELY COMPLETE, NO ERRORS

SCURCE STATEMENT

INY H
MOV M, A
INX B
MOV M, A
FOP H

RET
END

QLSR

QLSL1@ C ee3d QLSE C 0040
CMOVE C @eed QN12 C eez22

C 2040 QMOVE ¢ @eee

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)

The foliowing is a slep-by-step description of the algorithm used
in the conversion example:

™

LN

. Copy the fixed point number into the location of the floating

point number.

Test the fioating point number to see if it is zero.

Return to caller if the number is zero.

The sign is defaulted to O (plus).

Default the actual exponent to 23. This is the exponent that
would be valid if no shift is required, i.e., the most significant 1
is in bit position 23. Since the Am9512 format has a bias of
127y the bias is added to the defaull value to make the
defaull exponent 2345 + 12749 = 1501p.

If bit 31 in the floating point register = 1, then the input number
isa negative number. The number in the floating point register
is negated (two's complement negation) and the sign is
setto1.

If bits 24-31 of the floating point register are all zeroes, then

a

the input number has an exponent less than or equal 23. The
program transfers to step j for possible left shifts. Otherwise
the program falls through to h.

. Bits 24-31 are notall zeroes. This means the magnitude of the

fixed point number is greater than 223, The floating point
register is right-shifted one place and the exponent is in-
cremented by 1.

Test bits 24-31 again for all zeroes. If they are not all zeroes,
repeal step h. If bits 24-31 are all zeroes, shifting is complete
and the program transfers to step I.

Bits 24-31 are all zero. If bits 23 = 1, no more shifting is
required and the program transfers to step I.

. Left-shift floaling point register. Decrement exponent by 1and

repeat step .

Shifting is complete. The exponent is stored into bits 23-30.
(The original bit 23, the “hidden 1" is overwritten).

Store the sign into bit 31 of the floating point register.

. Return to caller.



4.3 FLOATING POINT TO BINARY FIXED POINT

Figure 4.2 shows the flowchart of a floating point to fixed point
conversion flowchard. An Am9080A assembly language sub-
routine that implements to flowchart is shown in Figure 4.3. The
following is a step-by-step description of the algorithm:

a.
b.
c.

o~ oa

Copy the floating point number into the fixed point register.
If the floating number is zero, return to caller

Unpack the floating point number from the fixed paint register
by removing the exponent and sign. The exponent (in the
unbiased form) and the sign are stored in CPU registers. The
“Hidden 1" is restored in the fixed point register.

If exponent is less than 0, zero fixed point register and exil
If exponent is larger than 31, sel overflow flag and exil.
Subtract 23 from exponent to derive the shift count.

If the adjusted exponent is greater than zero, the original

h. If the exponent = 0, shi

exponent is greater than 23, the program transfers to step  to
left shift fixed point register, or else it falls through to step h.
is complete and the program trans-

fers to step |.

Right-shift the fixed point number one position and increment
the exponent by 1. Repeat step h.

Left-shift the lixed point number by one position and decre-
ment the exponent by 1.

k. If the exponent is nol zero, repeat step |; or else, the pro-

gram falls through to step |.
Tesl the original sign of the Hoaling point number. If sign is
positive skip step m.

m, If the sign is negative, negale the number in the fixed point

register (two's complement).

n. Return to caller.

START
FIX = FLOAT EXP = EXP -~ 23
¥ N
N ¥
EXTRACT LEFT SHIFT
SIGN, FIX EXP = 07
EXPONENT EXP = EXP - 1
¥ RIGHT SHIFT
EXP < 07 EXP = 07
EXP = EXP 4 1
' L

SIGN = 1

FIX = —FIX

MOS:-640

Figure 4.3, Fix to Float/Float to Fix Conversion Subroutines




44 DECIMAL TO BINARY FLOATING POINT CONVERSION

When a programmer works with binary floating point numbers, it
Isoften necessary to convert decimal numbers into binary floating
point notation to enter the desired numbers into the machine,
Figure 4.4 shows the flowchart of such a conversion program and
Figure 4.5 shows a BASIC program that does the conversion.

The program uses an array A of 32 elements. Each element of the
array corresponds to one bit of the floating point number: A(31) is
the sign bit, A(30) to A(23) represent the exponent and A(22) to
Al0) represent the mantissa. Other variables used are as follows:

D - The decimal number entered from console

E - The exponent of the binary floating point number

H - An index to the hexadecimal string with range 0-15

H§ — An ASCII string of all hexadecimal characlers used for
hexadecimal output

| — An integer used for loop index

J — A number used for comparison when unpacking the
exponent and the mantissa

M - The mantissa of the binary floating point number

The following equation converts a floating point number from one
base to another:

Let Ep = Exponent of new number
My = Mantissa of new number
Bs = Base of new number
Ny = Original number

Given Ny and Bp, the equations used to solve Ep and M are:

Ep = INT (LOG (N1)/LOG (Bp))
Mz = Ny/(Bz * * E2)

l START ,

ZERO ARRAY
Al0) — A@1) = 0

GET UNBIASED
NENT

E=
INT (LOG DILOG 2)

l

INPUT
DECIMAL NO.
D

GET MANTISSA
M=D21E

I

GET BIASED
EXPONENT
E=E+127

l

CONVERT EXP
T BINARY
A[30) — A(23) = E

CONVERT MANT
EEYIS.-?? TO BINARY
AT ARZ) - AD) =M

l

NEGATE D
D=-D bt

OUTPUT
31) — A[0) IN
HEXADECIMAL

I

MOS-641

Figure 4.4. Decimal to Binary Floating Point Conversion Flowchart



REM
REM

DIM A(22) %

B4 = "g12345678SABCDEF"
PRINT "INPUT DECIMAL NO. "
INPUT ©

REM  CLEAR BINARY ARRAY
FOR I = @ TO 31

A(I) =@

NEXT I

IF D = @ THEN 450

IF D < @ THEN A(@) = 1

L = ABS(D)

REM FIND THE EXPONENT

E = INT(LOG(D)/L0G(2)) + 1

M = D/2°E

REM FORM EINARY ARRAY FOR EXPONENT
IF E < 1 THEN 250

J = 128

FORI =11T07%

J =7J/2

IFED> J THEN A(I) =1 : E=E -
NEXT I

GOTO 220

REM E IS LESS THAN 1

A(1) = 1

J = - 64

FOR I =2T07%

J = J/s2

IF E >= J THEN A(I) = 1 ELSEE=E - J
NEXT I

REM FOCRM BINARY ARRAY FOR MANTISSA
J =1

FOR I = 8 TO 31

J =J/2

IFM>=J THEN A(I) =1 : M =M =J
NEXT I

REM FORM HEXADECIMAL NUMBER AND OUTPUT IT
FOR I = @ TO 31 STEP 4

E = B¥A(I) + 4%A(I+1) + 2%A(I+2) + A(I+3)
PRINT MID$ (H$,E+1,1)}

NEXT I

PRINT
GOTO 52 .
PRINT ' 60800000
GOTO 50

a) Decimal String to Am9511A Floating Point Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs
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REM
REM

REM

REM

DIFINT A,I,H

DIM A(32 R
H$ = "@123456789ABCDEF
REM

REM CLEAR BINARY ARRAY A(2) TO A(31)
REM

FORI =2 T0 31

A(I) = 8

NEXT I

REM

REM INPUT A DECIMAL NUMBEE FROM CONSOLE
REM

PRINT .

INPUT "ENTER DECIMAL NUMBER";D

REM

REN
REM
IF D <3 @ THEN 288
PRINT "aeceeeed
GOTO 182

CHECK IF INPUT NUMBER IS ZERO

REM INPUT IS NOT ZERO, CHECK IF IT IS NEGATIVE
M

IF D ¢ @ THEN A(31) =1 : D = -D

REM

REM FIND THE UNBIASED EXPONENT
M

RE!

E = INT(LOG(D)/LOG(2))

REM

REM FIND THE MANTISSA

REM =

M= D/2"E

REM

REM FIND THE BIASED EXPONENT

REM

E=E + 127

REM

REM FORM BINARY ARRAY FOR EXPONENT
REM

J = 256

FOR I = 3@ TO 23 STEP - 1

J =J/2

IF E>=J THEN A(I) =1 : E=E-J
NBXT I

REM

REM FORM BINARY ARRAY FOR MANTISSA
REM

M=M=~ 1:REM STRIP OFF “FIDDEN 1"
J =1

FOR I = 22 10 @ STEP -1

I=J/2

IFMD>=J THEN A(I) =1 : M =M~ J
NEXT I

REM

REM FORM HEXADECIMAL NUMBER AND OUPUT TO CONSOLE
M

FOR I = 31 TC @ STEP -4

H = 8¥A(1) + 4%A(I-1) + 2%A(I-2) + A(I-3)

PRINT MIDS (H$,H+1,1);

NEXT I

GOTO 11@
b) Decimal String to Am9512 Floating Point Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs (Cont.)
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REM
REM
REM
REM
DEFINT E,I,S : DIM H(8)
REM

REM INPUT BINARY FLOATING POINT IN EEXADECIMAL
REM .
INPUT "ENTER AN 8 DIGIT HEXADECIMAL NUMBER";HS
REM UNPACK HEXADECIMAL NUMBER INTO A BINARY ARRAY
FORI =8 70 7
c% = MID$(H$ 1+: 1)
E(I) = ASC(C
IF (H(I) < 49 oa H(I) > 7¢) THEN 530
(I) > 57 AND B(I) < 65) THEN 530
(I) - 48
> ¢ THEN H(I) = H(I) - 7
REM FIND TEE SIGN OF THE NUMBER
REM
S=8
IF H(@) > 7 THEN 5§ = 1
REM
REM FIND THE EXPONENT OF THE NUMEER
REM
E = 32%(H(8) AND 7) + 2%*H(1) + (H(2) AND B)/8 - 127
M
REM FIND THEE MANTISSA OF THE NUMBER

) = H(2) AND 7
=21T07
+ H(I)/27 (3+4%(1-2))

M
REM FIND THE NUMBER BY COMBINING EXPONENT & MANTISSA

REM
N=(2"E) * M

REM

REM CHECK SIGN T0 SEE IF NEGATION REQUIRED

REM

IF S =1 THEN N = -N

REM

REM QUTPUT DECIMAL NUMBER

REM

PRINT N : GOTO 9@

REM

REM ILLEGAL INPUT DETECTEL, ABORT

REM

PRINT "INPUT ERROR, UNKNOWN CHARACTER “";C4;""" : GOTO 90

b) Hexadecimal Floating Point

Figure 4.5. Binary to Decimal Floating Point Conversion Program
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REM
REM

REM

DEFINT A,I

LEFLEL B-H,J-Z

DIM A(64) ’

H$ = "912345€7BCABCDEF"

INPUT "ENTER DECIMAL NUMBER";D
REM CLEAR BINARY ARRAY

FOR I = 8 T0 63

A(l) = ¢

NEXT I

IF D = @ THEN 548

IF D < @ THEN A(B) = 1

D = ABS(D)

REM FIND TEE UNBAISED EXPONENT
E = INT(LOG(D)/LOG(2))

REM USE ITERATIVE LOOP TO FIND 2"F BECAUSE
REM EXPONENTIATION IS NOT EXACT T = 2°E
T=1

IF E = @ THEN 3290

I¥F E > @ THEN 280

REM THE EXPONENT IS NEGATIVE

FOR I = -1 T0 E STEP -1

T =1/2

NEXT I

cOTO 32¢

FORI =170 E

T = 2%

NEXT 1

REM FIND TEE MANTISSA AND BIASED EXPONENT
M = D/T

E=E + 1023

REM TFORM BINARY ARRAY FOR EXPONENT

J = 2048

FORI =1 T0 11

J=J/2

IFE> JTHENA(I) =1 : E=E~-J
NEXT I

REM FCRM BINARY ARRAY FOR MANTISSA
M=M- 14

J=1

FOR I = 12 T0 63

J=J/2

IFMD>= J THEN A(I) =1 : M=M -]

REM FORM FEXADECIMAL NUMBER AND QUTPUT IT
FOR I = @ TO 63 STEP 4

H = B%A(I) + 4*A(I+1) + 2%A(I+2) + A(I+3)
PRINT MID$(E$,H+1,1);

NEXT I

PRINT

6OTO 89 -
PRINT "@0C2000000000002
G010 8

¢) Decimal String to Am9512 Floating Point — Double Precision Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs (Cont.)
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REM
REM

DEFDEL A-G,K-Z

DEFINT I,J

DIM C(16) &

INPUT "INPUT 16 DIGIT HEXADECIMAL NUMBER “jH$
REM UNPACK HEXADECIMAL NUMBER INT A BINARY ARRAY
FOR I = @ T0 15

C$ = MID$(H$,I+1,1)

G(I) = ASC(CS) - 48

IF C(I) < @ THEN 2S0

IF C(I) > 1@ THEN C(I) = C(I) - 7
IF C(I) > 15 THEN 29@

NEXT 1

REM FIND SIGN OF NUMBER

5=0

IF C(@) > 7 THEN § = 1

REM FIND EXPONENT OF NUMEER

E = 256%(C(@) AND 7) + 16%C(1) + C(2) - 1@23
REM TFIND MANTISSA OF NUMBER

c(2) = c(2) aND 7

M=1

FOR I = 3 10 15
M=M+c(I)/2
NEXT I
N=(2E) #* M
IF 5 =1 THEN N = =N
PRINT N

GOTO 5¢ .
PRINT "INPUT ERROR
GOTO 5@

(4*(1-2))

¢) Double Precision Decimal Number

Figure 4.5. Binary to Decimal Floating Point Conversion Program (Cont.)
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 BINARY TO DECIMAL FLOATING POINT CONVERSION

order to read the value of a binary floating point number stored
puter, it is often useful to convert it to a decimal number

 person can visualize the number. The conversion from

1o decimal is somewhat simpler than from decimal to

The following is an algorithm to convert a binary number

decimal number:

the binary fioating point number into sign (S), un-

exponent (E) and mantissa (M).

the decimal value of the exponent using an integer

1o decimal conversion routine.

the decimal value of the manlissa using a fractional

1o decimal conversion routine.

the decimal value using

! -8 x2Ex M

The flowchart in Fig. 4.6 and the basic program in Fig. 4.7 lllus-
trate an example of such a conversion. The following is a descrip-
tion of the variables used in the basic program:

cs — A single ASCII character used during unpacking
of the input string,
E — The exponent of the binary floating point number.

H(0)-H(7) — Each element of the array represents the value of
each hexadecimal ASCII character entered. That
is, each element has the value 0 to 15.

HS$ — The input string, which should be an B-digit
hexadecimal number. Characters entered after
the eighth character are ignored.

| = An integer used lor loop index.

M — The mantissa of the binary fioating point number,

N ~ The decimal fioating point number.

INPUT HEX

UNPACK.
HEX STRING
INTO HEX ARRAY
H{®) - HIT)

DEFAULT
SIGN = 0

MOS5-642

Figure 4.6. Binary to Decimal Floating Point Conversion Flowchart



REM
REM

REM

DIM C(8) .
fn[gg "gnpuw 8 DIGIT HEXADECIMAL NUMEER: "j

NP
REM UNPACK nExnnnc:nan NUMBER INTO BINARY ARRAY
FOR I = @ T0 7

C$ = MID$(H$,I+1,1)

REM CEECK IF INPUT IS ZERO

IF BS <> 20000000  THEN 140

PRINT “@"

G0TO 5@

C(I) = ASC(C$) - 4B

C(I) < @ THEN 37¢

IF c(I) > 1e THEN C(I) = c{I) -7

IF C(I) > 15 THEN 370

NEXT I

REM CRECK IF INPUT IS NORMALIZET

IF (C(2) AND 8) > @ THEN 230

PRINT "INPUT NOT NORMALIZED FLOATING POINT NO."
GOTO 5@

REM FIND SIGN OF NUMBER

5=0

IF C(0) > 7 THEN § = 1

REM FIND EXPONENT OF NUMBER

E = 16*(C(2) AND 7) + C(1)

REM FIND MANTISSA OF NUMEER

M=20

FORI = 2 T0

M=H + C(I)/z (a4%(1-1))
NEX

RE,
N=(2"E) * M

IF S = 1 THEN N = -N
PRINT N

¢0TO 50 =
PRINT "INPUT ERROR
GOTO 50

Figure 4.7. Binary to Decimal Floating Point Conversion Programs
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51 INTRODUCTION

Until recently, fioating point cor P has been imp

either in software or in hardware with MSI/SSI (medium-scale
Integration/small-scale integration) devices. The former method
imvolves considerable programming effort and the resulting pro-
ductisusually very slow. It also consumes valuable main memory
space for the floating point routines. The latter method involves
using hundreds of ICs, which requires considerable development
elfort, and the resulting product is expensive lo manufacture and
fequires considerable power and space. With the advent of LS|
(large-scale integration) technology in recent years, it becomes
possible to put a complete hardware floating point processor into
asingle IC.

The advantages of the single-chip LSI floating point processor
compared to previous hardware implementation are as follows:

Low development cost —

The cost of developing an interface to a single-chip floating
point processor should be less than 10 percent of the cost of
developing a complete hardware fioating point processor.
Low production cost —

The cast of producing and testing of hardware fioating point
‘boards Is at least several hundred dollars whereas the cost of a
single-chip processor is only a small fraction of that cost.
Improved reliability —

Most electronic failures occur at the interface level. By com-
bining all the logic inside a single device, the number of con-
nections in the system is drastically reduced. Hence reliability
Is increased.

Less power consumption —

The single-chip processor typically draws less than 5 percent of
the power of an MSI/SS! implementation.

Lass space —

Thesingle-chip processor usually fits on the same board as the
GPU, thus requiring one or two fewer boards than the MSI/ss|
solution.

Gel product to market sconer —

Due o less effort required both for development and produc-
tion, using single-chip processors will shorten the design cycle
ol a new product.
advantages of the single-chip LS| floating point processor
ver software floating point computation methods are:
 Enhanced execution speed —

Hardware floating point processors typically execute floating
- point arithmetic five to 50 times faster than software. If the
: ﬂaﬂhgpolnl processor allows concurrent CPU execulion, the
;waraﬂ throughput is even further enhanced for applications

"
ZBO00 is & trademark of Zilog, Inc.

|
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SINGLE-CHIP FLOATING POINT PROCESSORS

where the CPU can do other meaningful tasks during a floating
point computation.

Low development cost —

The costof developing a comprehensiva software floating point
package often involves many manmonths of pragramming ef-
fort. With a h processor, ming is d ly
reduced because the floating point computation algorithm is
precoded inside the hardware processor.

Less main memory required —

Since the floating point processors contain the computation
algorithm on chip (often in microcade), it could save a few
thousand bytes of main memory. This should be important in
applications where CPU has limited addressing space.

Improved portability —
With the advent of new microp ors in rapid freq Y.
software often must be rewritten when upgrading from on
CPU to another. When using the hardware processors, rewrit-
ing the foating point routines is eliminated.
The first LSI single-chip floating processors available commer-
cially were introduced by Advanced Micro Devices, AMD intro-
duced the Amg511 Arithmelic Processor unit in 1977 and the
Am9512 Floating Paint Processor unil in 1979.

5.2 Am9511A ARITHMETIC PROCESSOR

This pioneer single-chip arithmetic processor interfaces with
maost popular 8-bit microprocessors such as Am9080A, AmB08S,
MCB800 by Motorola and 280 by Zilog. It can also be used for
16-bit microprocessors such as AmZ8000," but its perfermance
with such 16-bit microprocessors is somewhal hindered by its
8-bil external data bus.

Although the exlemnal interface is only 8 bits wide, the Am95114A
internally is a 16-bit microprogrammed, stack-oriented floating
point machine. It includes not only fioating point operations but
fixed point as well. In addition to the basic add, subtract, multiply
and divide operations, transcendental derived functions are also
included. A data sheet of Am8511A is included in Appendix A,

5.3 Am8512 FLOATING POINT PROCESSOR

The Am9512 is a follow-up to the Amasi1A, Although the
hardware interface between the two chips is similar, the data
formats are different.

The Am9512 supports two data types: 32-bit binary floating point
and 64-bit binary floating point. The formats adopted are com-
patible with one of the proposed IEEE formats. Unlike the
AmI511A, the Am9512 does not have any of the derived trans-
cendental functions. A description of the Am8512 is included in
Appendix B,



CHAPTER 6
SOME INTERFACE EXAMPLES

6.1 INTRODUCTION

This chapter describes examples of interfacing some of the
popular microprocessors 1o the Am3511A and Am3512 single-
chip floating point processors. The examples given are for con-
ceptual illustration only, minor timing details may need to be
modified for systems running at nonstandard clock rates.

6.2 Am9080A TO Am9511A INTERFACE

Figure 6.1 illustrates a sample interface for an AmS080A 8-bit
microprocessor to an Am9511A. The system controller that inter-
faces to the Am9511A is an Am8238 and not an AmB228 because
the IOW (or MEMW) from the Am8228 will appear too late to put
the Am8080A into the WAIT state. This could cause possible
overwriting of Am9511A internal registers.

In the example illustrated, the CS input comes from an address
comparator Am25L.82521 (B-bit comparator). Note that the chip
select decoder must not be strobed with TOR or TOW, because
doing so will cause CS to go LOW after IOR or IOW went LOW.
The Am9511A chip select to read or wrile time has a minimum
setup time of 0. Strobing the chip select decoder will cause the
setup time to be negative and cause the Am8511A to malfunction.

Nolte that the Am8511 CS (but not the Am9511A) requires &
high-to-low transition for every read or write cycle. This means
that the address decode should be as explicit as possible to
guarantee a low-to-high transition on the address decode. In Fig
6.1, only low-order address locations are used and an AmS080A
program cannot form a read/write loop in 2 bytes; a transition on
the address comparator is guaranteed. If using 4-bit comparator
instead of 7-bit comparator, the program could form a read/write
loop in 16 bytes. If the loop memory address always coincides
with the Ama511 I/O address, there will not be a transition on the
comparator output and the Ama511 will not function properly.
Although the Am8080A duplicates the |/O address on Ag-Aqs
these address lines should not be used for Am9511 address
decode because if the program is execuling in a region where the
upper 7 bits of address malch the Am3511 /O port number, no
chip-select transition may occur.

The example shows an interrupt driven interface. Al the end of
every Am3511A operation, the END signal goes LOW. This
causes the AmS080A to go inle an interrupl-acknowledge se-
quence. Since the INTA on the Am8238 is pulled to +12V through
a 1K resistor, the data bus is pulled to all 1's during the interrupt-
acknowledge cycle. This generates an RST 7 instruction 1o the
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AmIDBOA, The AmSOBOA stores the current program counter on
Ihe stack and jumps 1o location 38H to execute the interrupt
‘handling routine. By pulling the EACK HIGH, the END output will
‘stay LOW until the first read/write operation is performed on the
AmSS11A, thus clearing the interrupt request.

6.3 Am90B0A TO Am8512 INTERFACE

Figure 6.2 illustrates an example of interfacing the Am9512 to the
m The principal timing difference between the Am9511A
8nd the Am9512 is that the PAUSE follows RD or WH in the
Am3511A whereas the PAUSE follows CS in the Am9512.

Two additional gates (74508 and 74L532) are inserted in the
PAUSE to RDYIN line. Otherwise, during a memory cycle in
‘which the memory address bits 1to 7 match the /O address of the
Am8512, the PAUSE will go LOW, Since there will be no IOR or
T0W in that cycle to reset the PAUSE, the system will be dead-
locked, The additional gates allow the PAUSE 1o pass through
only il the current cycle is an 1/0 cycle. Strobing the chip select
decoder with TOR or [OW will not work because that will create a
negative chip select to AD or WR setup time, which is not permit-
{66 with the Ama512. Other ¢ ions about the chip-select
decoding are the same as discussed in Section 6.2,

The 74L532 gate shown at the top of Figure 6.2 allows either END
OrERR Iointerrupt o CPU. The CPU can read the status register
ol the Am3512 to determine the source of the interrupt.

6.4 AmBO85A to Am9511-1 INTERFACE

In a typical AmBOB5A system, the system clock rate is 3MHz. The
Am9511A-1 is selected because the Am9511A-1 has as a
maximum clock rate of 3MHz. The Am80B5A has an earlier ready
setup window compared with the Am9080A. If the PAUSE signal
is connected directly to the READY input to the AmBOBSA, the
READY line will be pulled down too late for the AmBOB5A to go
into the WAIT state. The 74LS74 is used for forcing one WAIT
state when the Am9511-1 is accessed. After the first WAIT state,
the 74LS74 Q output is reset to HIGH and the PAUSE of the
Am9511-1 controls any additional WAIT states if necessary. The
chip-state decoder is strobed with IO/M signal to prevent
AmMI511-1 1 ing to memory when bits 9 o 15 of
the memory address coincides with Am9511A-1 I/O address.

6.5 AmB085A TO Am9512-1 INTERFACE

The Am9512 is designed specifically to interface to
AmBOB5A, The interface is straightforward and no additional logic
is required. The Am8512-1 is used instead of Am9512 because
the typical AmBO8B5A system runs at 3 MHz.

The ERR output and END output are connecled to separate
interrupt inputs so that the CPU can identify the souce of interrupt
without reading the status register of the Ama512-1.

Since the chip-select decoder is strobed with the I0/M signal, a
transition is guaranteed with each I/O operation without the con-
cern of insufficient address decode as in the AmS080A to
AmI511A or Am9512 interfaces.
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80 TO Am9511A INTERFACE

B5illust aprog
1A with a Z80 CPU.

Select (CS) signal is a decode of ZBO address lines
lis assigns the Am9511A to two conseculive addresses,
(Data) address, and the next higher odd (Command)
Selection between the Data (even) and the Command/
{odd) ports is by the least significant address bit AQ.

Q (Input/Output Request) from the Z80 is an enable input
12515139 decoder. The WR and RD from the ZBO are the
puts to the decoder. The outputs Y1 and Y2 are tied to WR
D of the Am9511A. The PAUSE output of the Am9511 is
dto WATT line of Z80. The Am9511A outputs a LOW on
150ns (max) after RD or WR has become active. The
remains LOW for 3.5 TCY -+ 50ns (min) for data read and
1.5 TCY + 50ns (min) for status read from Am8511A
is the clock period at which Am9511A is running.
, Z80 will insert one to two extra WAIT states. The
PAUSE output responds lo a data read, data write, or
write request received while the Am9511A is still oc-
(executing a previous command) by pulling the PAUSE
LOW. Since PAUSE and WAIT are tied together, as soon
tries to interfere with APU execution, Z80 enters the WAIT

o technique for

0 TO Am9512 INTERFACE

2 interface to Z80 (Fig. 6.6) requires two more gates
Am3511A interface to Z80. An inverter is added to the
trequest line because the sense of the END/ERR signals

are different. The 74LS32 is added in the wait line because the
Am9512 PAUSE will go LOW whenever chip select on the
Am3512 goes LOW. In Fig. 6.6 the chip-select input can go LOW
during second or third cycles of an instruction when the memory
address malches the Am9512 I/O addressed. If the 74L.S32 OR-
gate is omitted, the WAIT input an the Z80 will go LOW and the
system will be deadlocked. Strobing the chip-select decoder will
not work because this would cause a negalive chip selectto AD or
WH time on the Am9512.

The chip select decoder in this example is strobed with M. This
accomplishes a dual purpose. It not only guarantees a chip select
transition on every /O cycle, it also prevents the chip select to go
LOW during an interrupt acknowledge cycle. This is vital because
TORQ is also LOW during that cycle. Without the Mi strobe, C8
might go LOW and cause PAUSE to go LOW which will again
cause the system lo deadlock.

6.8 MC6800 TO Am9511A INTERFACE

Figure 6.7 shows interface of a Motorola MCEB00 microproces-
sor to an Am9511A. The MC6800 has no explicit /O instructions.
All /O devices are treated as memory locations. Therefore the
chip-select input of the Am8511A is derived from a decode of
address lines Ay to Ays. The decoder is strobed by VMA (Valid
Memory Address) to produce a glitch-free output. The C/D input
of the Am9511A is connected directly to the A, of the MC6800 so
that the even address selects the data port and odd address
selects the status orcommand port. The RD and WR inputs to the
Am9511A is derived by demultiplexing the ¢2 and VMA and the
RM signals.

AT G1
AS G2A
AS [——————=01 G2B
Am25LS138
a3 (3
a2 8
a A Ypo————=g &
A cb
D0-07 e A DB0-DB?
¢ AmISTIA v
‘
0| RESET ioRG @ i
. vz WA
a AD B Am25LS139 a2y
e njo—————qg 47K
Wart A R o
o o +5V O—AWA—) EACK
END.
CLK
PAUSE
M !__ RESET
MOS-647

27

Figure 6.5. Z80 to Am9511A Interface



] @
mp— o &
a8 f— o 28
AmM2SLE1IR
mpb—c
az ¥
A A ¥ ]
a0 % crb
r
o . 007 N— > 08006
L o miser 676 Jo— & v fo— Ames1z
= vz
o WY L B amasisiag,
WAt WA Jo A v
s
741804
g 7S04
Iy, LSS
1o MOS-648
Figure 6.6. Z80 to Am9512 Interface
Ak
5 O——AAN—t
i
AmasLSZ821
@
Avats CHP Eout jo & BB jo—
SELECT
DECODE
—of e
Ao )
L oBo0nr
PR
Amasiia
waa L P>o— 8 e
amzsisin 0
& - v AD
Ry wlo—+ W
£
RESET 74804
FESET
o1 42 oLk
FAUSE
——| BEsET
Tmope: 10K 5V AR
[_| S0 SEY 10K
b1 o2
$aTTL
caTIA Am26502 TALS0R
I : a
cr
[ Py, 73508
1%
MOS-649

Figure 6.7. MCE800 to Am9511A Interface
28



The Am9511A has a relatively long read access time. To read the
Am8511A dala or status registers, the RD pulse to the Am9511A
must be stretched and the clock to the Am9511A clock must keep
nunning because the read access time is a function of the jpropa-
gation delay and the number of clock cycles. The MCB871A clock
diiver chip provides a perfect solution to the problem. It has a
memory ready input to strelch the ¢2 HIGH time and a 2XFC
Iree-running clock output that is not affected by memory ready
iipul. The standard MC6800 uses a 1MHz clock so that 2XFC is
al 2MHz, which is the ideal frequency for an Am9511A. When a
0S lo the AmISIIA is decoded, the Am26502 one-shot is
tiggered to pull the memory ready line LOW for approximately
500ns. This allows the PAUSE output o take control of the
memory ready. The one-shot is necessary because PAUSE will
flot go LOW soon enough to stretch out 4.2 in the current cycle.

‘Since the MCEB800 is a dynamic device and the clock input must
ot be stopped for more than 5 microseconds, the programmer
must not perform operations other than a status read while a
wurent command is still in progress. This avoids producing a
output fonger than 5 microseconds. The programmer
shauld check the status register to verify that the Am9511A is not
busy before performing any operation other than a stalus read.

6.9 MC6800 TO Am8512 INTERFACE

The MCB300 interface to Am9512 (Fig. 6.8) is somewhat simpler
han the MCB800 to Am9511A interface. Al the discussions in
Section 6.8 also apply to this section except for the one-shol.

Since the PAUSE output from the Am512 follows the €S instead
of RD or WR, the memory ready signal can be directly driven by
the PAUSE output. The only other addition is the inverter between
the END output of the Am512 to the IRQ input.

The software considerations concerning the possibility of exces-
sive PAUSE time discussed in the previous section also apply to
the Am9512 interface.

6.10 AmZB002 TO Am9511A INTERFACE

The Am9511A can also be interfaced 1o a 16-bit microprocessor
such as the AmZB8002. Since the data bus of the Am3511A is only
8 bits wide, the operations performed must be byte-oriented.

The AD and WH inputs to the Am9511A can be obtained by
demuitiplexing the data strobe (DS) output of the AmZ8002. The
data bus of the Am9511A can be connected to either the upper 8
bits or the lower 8 bils of the AmZB8002 data bus. If the Am3s11A
data bus is connected to the upper 8 bits (Fig. 6.9), the I/O
address of the Am9511A is always even. I the Am951 1A data bus
is connected to the low 8 bits, the /0 address is always odd,
The chip select is derived from a decode of Az 1o Ats. Ay is
used [0 select between data/status during READ and data/
command during WRITE.

Due to the long READ access time of the Am8511A, the AmZ8002
must be pul in a WAIT state for each READ access o the
Am9S11A. If the PAUSE output of the Am9511A is connected
directly to the WATT input of the AmZ8002, the PAUSE output will
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late to put the AmZ8002 into the WAIT slate. The

 4-bit shift register is used to solve this problem.
address strobe, the Qg output will be forced LOW if
Lo the AmS511A is present. The Qg will remain LOW
periods. If PAUSE is LOW during this period, the
ill remain LOW because the Am25LS195A is held at
[ stale. After the PAUSE returns to high the Qp output
after two clocks and the AmZB8002 can proceed with
operation. An alternative method of handling the
1i5 use a one shol as in Figure 6.7.

6.11 AmZ8002 TO Am9512 INTERFACE

The AmZB002 1o Am9512 interface is similar to the AmZ8002 to
Am8511A interface, except the PAUSE output of the Am3512 can
be connected directly to the WAIT input of the AmZ8002. This 1s
because the PAUSE output of the Am8512 follows the chip select
instead of RD or WR and the AmZ8002 has sufficient time to go
into the WAIT state. Figure 6.10 illustrates interfacing the Am9512
with the AmZ8002.
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CHAPTER 7 |
Am9511A INTERFACE METHODS ‘

7.1 INTRODUCTION

Interfacing the Am9080A to the Am9511A can be accomplished in
one of the following ways:

1. Demand/wait

2. Poll status

3. Interrupt driven

4. DMA transfer
The various tradeoffs of these methods are discussed below.
Although only the Am9080A and Am9511A are used as an exam-
ple, the principle applies to any of the processors discussed in
Chapter 6.

7.2 DEMAND/WAIT

This interface is the simplest both in terms hardware and
software. The connection is shown in Fig. 6.1, except that the
interrupt input to the Am3080A need not be connected to the END
output of the Am9511A. When this interface is used, the pro-
grammer can regard the Am9511A as always ready for READ and
WRITE operations. If the Am9511A is not ready, the PAUSE will
go LOW to put Am9080A in the WAIT state. When the Am9511A
has completed the current operation, the PAUSE will go HIGH
and the suspended READ and WRITE will praceed. Figure 7.1
shows an example ol a program that loads the data into the
Am9511A, executes a command and retrieves the data from the
Amg511A,

The drawback of this method is that concurrent processing by the
CPU is not allowed, and the CPU also cannot respond to other
interrupts or DMA requests in the system while it is in the WAIT
state. In sy where above consideralions are not import
this would be the preferred method. This interface is not applica-
ble lo MC6800 systems because the clock of the MC6800 may
not be stretched beyond 5 microseconds.

7.3 POLL STATUS

The hardware interface of this method is the same as demand/
wait. The software (Fig. 7.2) is slightly more complicated. When
the CPU wants to READ or WRITE to the AmS511A, the status
register is first read. If the most significant bitis a 1, the Ama511A
is executing a command. The CPU should refrain from perform-
ing any operation on the Am3511A except loop back for another
status read. When the MSB of the status is a 0, the Am8511A has
finished executing the command and the program can fall through
to perform a READ or WRITE to the Am3511A.

This method does not allow the CPU to perform useful concurrent
tasks, butit does allow the CPU to respond to interrupts and DMA
requests when it is in the status poll loop.

7.4 INTERRUPT DRIVEN

The hardware configuration of the interrupt driven method is
shown in Fig. 6.1. The CPU would first load the APU data stack
and then issue a command. During the command execution, the
CPU would be able to perform other useful tasks in the system.
When the Am8511A has finished the command, the END output
goes LOW to issue an interrupt request. When the interrupt
request is acknowledged by the CPU, the CPU execules a routine
to feteh from the Am9511A data stack and, if necessary. load up
the data stack and issue another command.

This method is most suitable for real-time multitasking systems
because concurrent execution of the CPU and APU is allowed.
Figure 7.3 shows an example interrupt handier for Am9511A.

7.5 DMA TRANSFER

If ultimate system performance is required, the Am9511A data
stack can be loaded and unloaded by a DMA controller such as.
the Am9517A. To achieve maximum throughput, two channelsa!|
the Am9517A DMA controller are used in the configuration
shown. Channel 2 is used to load the Am9511A and channel 3 ‘vsI
used to unload the Am3511A result into the main memory. Fot
real-time interrupt driven systems, an interrupt controller such as
the Am9519A should also be used. Figure 7.5 shows the connec-
tion diagram of such a system and Figure 7.4 shows a sample
program to drive such a system.

The following is the initializing sequence required only aﬂer|
power up or system reset:

. The Command Register
Bit 0 = Don't care (applies to memory to transfer opllnﬂl
Bit 1 = Don't care (applies to memory option) |
Bit 3 = 0, Enable DMA conlroller |
Bit 4 = 0, Normal timing |
Bit 5 = 1, Extended wrile i
Bit 6 = 0, DREQ active HIGH |
Bit 7 = 0, DACK active LOW

The mode register of channel 2:

Read mode, auto initialize, address decrement, block mods

The mode register of channel 3:

Write mode, auto initialize, address increment, block mode |

The word count register of channel 2:

Initialized to a count of 8

The word count register of channel 3:

Initialized to a count of 4 I

Mask register: |

Channels 2 and 3 cleared

|

The word count registers may need to be modified later if the word-
count desired is not the default value.

The following is a sequence of operations required for each
Am511A operation:

e

@®

. The operand address is written to the base address register of
channel 2 of the Am9517A. |
If the word count of the operand is different from the previous
operation, the new word count is written to channel 2 of the

Amg517A,

3. The address of the result is written 1o the channel 3 base

address register.

A software request is sent lo channel 2

The CPU performs other tasks.

Aninterruptis received from channel 2 end of operation signal. |
The CPU writes the command word into the command register
with MSB of the command word set to 1 to indicate DMA
service required at end of operation.

The CPU is free to perform other tasks.

Aninterrupt is received from channel 3 end of operation signal

The result is now is the desired location in main memory.

n

Noeo s

©

The above method offers maximum concurrent operation of an
AmZ0BOA and Am9511A system. If Am9512 is used instead of
Am9511A, the mode of transfer of the Am8517A must be in single.
transfer mode to obtain a transition at the chip select input uHheL
Amg512.
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MOD17
CLR17
MSK17

UICDR
UuIC R
UICCR

SOURCE STATEMENT
FAGEWIDTE(8@) MACROFILE NOOBJECT
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PROGRAMS FOR CHAPTER 7 OF
FLOATING POINT TUTORIAL

SRR

NAME CHAP?

AMB511A ARITHMETIC PROCESSING UNIT
I/0 PORT ASSIGNMENT

EQU @CeH 7AM9511A DATA PORT
EQU APUDR+1 FAM9511A STATUS PORT
EQU APUSRE iAM9511A COMMAND PORT

AM9517A MULTIMODE DMA CONTROLLER
1/0 PORT ASSIGNMENT

EQU @BOH AM9517A BASE ADDRESS
EQU DMAC+4 i CHANNEL 2 ADDRESS
EQU DMAC+5 7 CHANNEL 2 BYTE COUNT
EQU DMAC+6 jCHANNEL 3 ADDRESS
EQU DMAC+7 iCHANNEL 3 BYTE COUNT
EQU DMAC+8 i COMMAND REGISTER

EQU DMAC+9 fREQUEST REGISTER

EQU DMAC+@8BE MODE REGISTER
EQU DMAC+@DH FMASTER CLEAR
EQU DMAC+@FH FMASK REGISTER

AM9519 UNIVERSAL INTERRUPT CONTROLLER
1/0 PORT ASSIGNMENT

EQU @C2H 7AMG519 DATA PORT
EQU UICDR+1 5AM9519 STATUS PORT
EQU UICSR 7AM9519 COMMAND PORT
CSEG

PROGRAM EXAMPLE FOR DEMAND UA]T INTERFACE
*ukkk FIGURE 7.1 **

T0 CALL THE FOLLOWING PROGRAM,
ON ENTRY:

EL = POINTER TO TFE FIRST OPERAND (NOS)
DE = POINTER TO THE SECOND OPERAND (T0S)
BC = POINTER TO THE RESULT

A = THE 2 OPERAND OPCODE

ON RETURN:

A = TEE STATUS REGISTER CF AMS511A
ALL POINTERS ARE DESTROYED

Figure 7.1. Demand/Wait Programming
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LOC O0RBJ LINE SOURCE STATEMENT

55 ;
2090 C5 56 DEMAND: FUSH B jSAVE RESULT POINTER
@ee1 F5 57 PUSH PSW §SAVE OPCODE
ees2 010300 58 1XI B,3
eees e9 59 TAD B ;MOVE SOURCE POINTER TO LSB
6e ;
61 PUSHE OPERAND #1 ONTO APU DATA STACK
62 j
0806 0604 63 MVI B,4 $INIT LOOP1 COUNTER
2008 7E €4 DLOOP1: MOV A,M FFETCH A PYTE FROM OPER 1
0009 T3Ce €5 OUT APUDR jPUSHE ONTO APU DATA STACK
2003 2F 66 ICX E ;DEC. BYTE POINTER
8eaC @5 67 ICE B iDEC. LOOP COUNTER
880D C20888 C 68 JNZ DLOOP1
6S ;
9¢1@ EB 70 XCHG FPUT OPERAND 2 POINTER IN HL
6211 218300 71 1XI B,3
2014 09 72 DAD B iMOVE POINTER TO LSR
72
74 PUSH OPERAND #2 ONTO APU DATA STACK
75 j
2615 8604 7€ MYI B,4
2017 7E 77 DLOOP2: MOV A,M FFETCH A BYTE FROM OPER 2
9218 D3ce 78 OUT APUDR 5PUSE ONTO APU DATA STACK
8014 23 79 DCX E jDEC. BYTE POINTER
2018 05 8o DCR B iDEC. LOOP COUNTER
8@1C C21708 C 81 JNZ DLOOP2
82 ;
83 ; OPERAND LOAD COMPLETE, WRITE COMMAND
84 ;
2@1F F1 85 POP PSW ;RETRIEVE COMMAND OPCODE
0820 D3C1 86 CUT APUCR FWRITE TO APU COMMAND PORT
87 ;
88 ; READ DATA FROM STACK
89 ; IF THE APU IS NOT READY, THE PAUSE
90 ; SIGNAL WILL PUT AMO@8PA INTO THE
o1 ; WAIT" STATE UNTIL THE DATA IS READY
92 ;
p@22 C1 93 POP B JRETRIEVE RESULT POINTER
2023 1E04 94 MVI E,4 3INIT LOOP3 COUNTER
®025 DRCE 95 DLOOP3: IN APUDR FREAD APU STACK
8027 B2 9€ STAX B i STORE RESULT IN MEMORY
9028 83 97 INX B
8029 1D 98 DCR E
9024 C22500 C 99 JNZ DLOOP3
180 ;
161 ; RETURN STATUS IN A
102 ;
8020 DBC1 183 IN APUSR
pO2F €9 184 RET
185 % EJECT

Figure 7.1. Demand/Wait Programming (Cont.)
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0BJ LINE SOURCE STATEMENT
186 ;
187 & SUBROUTINE FOR POLL STATUS INTERFACE
108 *5% FIGURE 7.2 *¥k#s
188
t5 11e POLL: PUSE B FSAVE RESULT POINTER
F5 111 PUSH PSW i SAVYE OPCODE
2183pe 112 IXI B,3
03 113 DAD B yMOVE POINTER TO LSB
114
115 3§ CHECK IF AMSS511A IS READY TO ACCEPT DATA
116
DEC1 117 CEX1: IN APUSR fREAD APU STATUS
7 118 ORA A #SET CPU FLAGS
FA362¢ C 118 JM CHK1 i LOOP BACK IFP NCT READY
120 ;5
121 3 TEE AM9511A IS READ IF FALLEN THROUGH
122 j
2604 123 MVI B,4 7 INIT LOOP1 COUNTER
7E 124 PLOOP1: MOV A,M 7 FETCH FROM OPERAND 1
L3Ce 125 OUT APUDR jPUSH ONTC APU DATA STACK
2B 126 DCX H iDEC. BYTE POINTER
85 127 DCR B $DEC. LOOP COUNTER
C23E¢e C 1z8 JNZ PLOOP1
129 ;
EB 130 ECHG $PUT OPERAND 2 POINTER IN RL
9102090 131 LXI B,3
)04 29 132 TAD B iMOVE POINTER TO LSB
133 §
134 PUSH OPERAND #2 ONTO APU DATA STACK
| 135 j
BP4E 0604 13€ MVI B,4 # INIT LOOP2 COUNTER
BO4T 7E 137 PLOOP2: MOV A,M FETCE FROM OPERAND 2
{ 03Ce 138 0UT APUDR yPUSH ONTO APU DATA STACK
2R 135 ICX B iDEC. BYTE POINTER
8 05 140 LCE B FDEC, LOOP COUNTER
0052 024082 C 141 JNZ PLOOP2
142 5
143 ; OPERANDS LOATDED, WRITE COMMAND
144 §
2055 F1 145 POP PSW SRETRIEVE OPCODE
4856 D3C1 146 CUT APUCR iWRITE COMMAND TO APU
147 5
l4p : SET UP RESULT POINTER AND LOOP3 COUNTER
149 §
C1 150 POP B FRETRIEVE RESULT POINTER
1E@4 1651 MVI E .4 FINIT LOOPE COUNTER
152 §
153 WAIT UNTIL AMS511A FINISE EXECUTION
154 §
DECL 155 CEK2: IN APUSR FREAD APU STATUS PORT
B7 15€ CRA A 7 SET STATUS FLAGS
FASE@@ C 157 JM CHK2 jLOOP BACK IF NOT READY
F5 158 PUSH PSW FSAVE APU STATUS
158 ;
168 § THE AMO511A EAS FINISEED EXECUTION |

Figure 7.2. Status Poll Programming Interface
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Loc

06z
0064
0265

9066 1

@267

2¢6A
2068

0BJ

DBCE
a2
@2

D
cz6z2ee C

¥l
c9

LINE

161
162
163
164
165
166
167
168

170
171
172
173

e .

LOOP3:

SOURCE STATEMENT
READ RESULT

IN APUDR iREAD APU DATA STACK
STAX B ; STORE RESULT IN MEMORY
INX B 3 INC. MEMORY POINTER

DCR E iDEC. LOOP COUNTER

JNZ PLOOP3

EXECUTION COMPLETE, RESTORE STATUS IN A
POP PSW FRESTORE APU STATUS

RET
EJECT

Figure 7.2. Status Poll Programming Interface (Cont.)
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LINE SOURCE STATEMENT

174

175 § SUPRQUT INES FOR INTERRUPT DRIVEN INTERFACE
176 i *u%ik FIGURE 7.3 %ws

177 §

17e ; LOCATE INTERRUPT HANDLER IN RST 7 LOCATION
179 i

180 ASEG

181 ORG 38H

182 j

183 BRST7: PUSE PSW jSAVE ALL REGISTERS USED
184 PUSE B

185 FUSH H

186 MVI B,4 i INIT LOOP COUNTER

D 187 LHID RSTPTR i FETCE RESULT POINTER

188 ;

189 ILOOP1: IN APUDR iREAD RESULT FROM APU

198 MOV M,A #STORE IT IN MEMORY

191 INX H ; BUMP MEMORY POINTER

192 LCR B DEC. LOOP COUNTER

192 JNZ ILOOP1

194 ;

195 j DONE, SET DONE FLAG AND RESTORE REGISTERS
19€ ;

197 MVI A,1

D 198 STA DONE

199 POP H

200 POP B

201 POP PSW

202 RET

203 ;

204 § SUBRQUTINE TO LOAD APU STACK AND SEND

205 COMMAND WORD

20€

207 CALLING SQUENCE:

208 ; ON ENTRY HL = POINTER TO MSB OF 8 BYTES
206 ; OF OPERAND

2192 ; DE = POINTER T0 4 BYTES OF RESULT
211 ; A = EXECUTION OPCODE

212

213 ON RETURN: ALL REGISTER ARE NOT AFFECTET,
214 ; DONE FLAG CLEARED.

215 j

216 CSEG

217 §

218 LOAD: PUSH H ;SAVE OPERAND POINTER

216 PUSH D i SAVE RESULT POINTER

220 PUSE PSW iSAVE OPCODE

221 j

222 LXI D,8 jOPER. OFFSET, E = LOOP2 CIR
223 DAD D FMOVE OPERAND POINTER TO LSE
224

22% ; CHECK AM9511A STATUS

226 §

227 LLOGP1: IN APUSR FREAD AM9511 STATUS REG.
228 ORA A iTEST FOR BUSY

Figure 7.3. Interrupt Driven Programming
E1s




LOC ORJ LINE SOURCE STATEMENT
@076 FA7200 226 JM LLOCOP1 FWAIT UNTIL NOT BUSY

230 i

gz; i LOAD AMS511 STACK

- 1
9979 2B 233 LLOOP2: DCX H iDEC. OPERAND POINTER
@e7A 7E 234 MOV A,M iFETCE 1 BYTE OF OPERAND
@@7R D3Co 235 CUT APUDR LOAD APU DATA STACK
@e?r 1D 23€ ICR E iDEC. LOOF COUNTER
Pe7E C27900 237 JNZ LLOOP2

238 ;
0@81 F1 23¢ POP PSW 7GET OPCODE
@@82 D3C1 240 OUT APUCE sWRITE TO APU COMMAND REG.
ees4 210280 241 IXI H,DONE
0087 3600 242 MVI M,@ jCLEAR DONE FLAG
2089 E1 243 POP H FGET RESULT POINTER
208A Zz2Q000 244 SHLD RSTPTIR #STORE IN RESULT POINTER
@@8L EB 245 XCHG FRESTORE DE REG. PAIR
@P8E E1 246 EPH i RESTORE HL
@e8F C¢ 247 RET

248 ;

249 ; RAM AREA

250

251 LSEG

252 ;
eooe 253 RSTPTR: DS 2 FRESULT POINTER
0902 254 DONE: DS 1 DONE FLAG, 1 = DONE

255 % EJECT

Figure 7.3. | pt Driven Pr ing (Cont.)
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100 0BJ

S-11 8e82/8@85 MACRO

LINE

256
257
258
259
260
261
262
263
264

26€
267
268
269

271
272
273
274
275
276
277
278
278
280
281
282
283

285
28€
287
288
28¢
296
291
292
293
294
295
29€
297
298
299
389
381
ez
383
304
285

37
308
389
310

A

e e we e e wn e

SSEMBLER, V3.0 CHAP? PAGE 7

SOURCE STATEMENT

HIGH PERFORMANCE INTERFACE WITH
AMG5174 AND AMS510
wxdk TIGURE 7.4 #hk%

CSEG
AMO517A INITIALIZATION ROUTINE

CALLING SEQUENCE:
NO PARAMETERS REQUIRED ON ENTRY.

SOURCE OPERANDS ASSUMED TO BE 8 RYTES AND

RESLUT OPERAND ASSUMED TO BE 4 BYTES
ON RETURNED: NO REGISTER AFFECTED

NIT17: PUSH PSW i SAVE PSW
0UT CLR17 FMASTER CLEAR
MVI A,201€08023 ;LOAD COMMAND WORD
OUT CMD17 iWRITE TO COMMAND REG.
MVI A,181118183 ;LOAD CH 2 MODE WORD
OUT MOD17 FINIT CEANNEL 2 MODE
MVI A4,1201@111B ;LOAD CH 3 MODE WORD
CUT MOD17 7INIT CEANNEL 3 MODE
MVI A,8 iLOAD CH 2 BYTE COUNT
QUT CH2CNT FINIT CH 2 LOW BYTE COUNT
XRA A
QUT CH2CNT FINIT CH 2 EIGH BYTE CODNT
MVI A,4 iLOAD CH 3 BYTE COUNT
gg? EH3CNT JINIT CH 3 LOW BYTE COUNT
A
OUT CE3CNT iINIT CE 3 HIGE BYTE COUNT
MVI A,P0002011B ;LOAD MASK REGISTER PATTERN
0UT MSK17 FINIT MASK REGISTER
Pg; PSW FRESTORE PSW
R

SUBROUTINE TO INITIALIZE AM9519
CALLING SEQUENCE:

ON ENTRY: HL = STARTING ADDRESS OF WRITE

COMMAND SUBROUTINE
DE = STARTING ADDRESS OF SET
DONE FLAG SUBROUTINE
ON RETURN: NO REGISTERS ARE AFFECTED

NIT19: DI ;DISABLE ALL CPU INTERRUPTS
PUSH PSW i SAVE PSW
IRA A
OUT UICCR i SOFTWARE RESET AMG51¢
MVYI A,10081800B ;MODE WORD FOR MO-M4
0UT UICCR 3 SET MG-M4
MVl A,110060802B ; SELECT AUTO CLEAR REG
OUT UICCR

MYI A,00000211B ;SELECT CHE @ & 1 FOR AUTO CLR

OUT UICDR
MVI A,101108062B jSELECT MASK REGISTER

Figure 7.4. DMA Interface Programming
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ISIS-11 8@8@/B#85 MACRO ASSEMBLER, V3.9 CHAP? PAGE 8

Loc ORJ LINE SOURCE STATEMENT
@@c6 D3CcZ 311 OUT UICCR
@@c8 3EFC 312 MVI A,11111100B iCLR CH @ & 1 MASK REG.
@@CA Dacz 313 OUT UICDR
@ecC 3EFe 314 MVI A,11110000B ;SEL CH 2 FOR 2 BYTES
@@CE D3C3 315 OUT UICCR
@2p@ 3ECD 316 MVI A,BCDH 790884 “CALL” OPCODE
@@r2 Dacz 317 CUT UICDR
20D4 7B 318 MOV AE iGET CE @ LOW ADDRESS
@@D5 D3c2 319 OUT UICDR
8eD7 7A 3z2e MOV A,D SGET CH @ HIGH ADDRESS
@@D8 DaCz 321 OUT UICDR
@9DA 3EF1 322 MVI A,11110@@1R ;SEL CE 1 FOR 3 BYTES
2@DC D3c2 323 QUT UICCR
@ODE 3ECD S24 MVI A,@CDB 79@86A "CALL" OPCODE
@PEE@ D3C2 325 QUT UICDR
@QE2 7D 32€ MOV A,L FGET CH 1 LOW ADDRESS
0@E3 D3C2 327 QUT UICDR
BeES 7C 328 MOV A,H FGET CH 1 EIGH ADDRESS
P@E6 D3C2 32¢ CUT UICDR
@@E8 3EAL 530 MVI A,121808@1B ;ARM AM951S
B@EA D3C3 331 OUT UICCR
BQEC F1 332 FOP PSW FRESTORE PSW
@OEL FB 333 El 3 ENABLE CPU INTERRUPTS
BPEE C9 334 RET
335
336 ; SUBROUTINE TO PERFORM AN EXECUTION WITH
337 8 BYTES OF OPERANDS AND 4 BYTES OF RESULT
338 ; CALLING SEQUENCE:
339 0 ENTRY: KL = ADDRESS OF OPERANDS
349 DE = ADDRESS OF RESULT
341 A = OPCODE
342 ON RETURN: ALL REGISTERS ARE NOT AFFECTED
343
@QEF F5 344 EXEC: PUSH PSW 3 SAVE OPCODE
@OFQ 320260 D 345 STA OPCODE 3 INIT OPCODE STORAGE
Q8F3 AF 34€ XRA A
0@F4 320400 D 347 STA DONE2 jCLEAR DONE FLAG
@8r? 7D 348 MOV A,L
@9F8 D3R4 3489 QUT CHZADR INIT CH 2 LOW ADDR
@OFA 7C 35@ MOV ALH
@@FE D3R4 351 0UT CHZADR FINIT CH 2 HIGH ADDR
¢@FD 7B 352 MOY A,E
@OFE D3B6 352 CUT CH3ADR FINIT CH 3 LOW ADDR
2188 7A 354 MOV A,D
21081 D3B6 355 CUT CH3ADR FINIT CH 3 HIGE ADDR
0183 3EOE 35€ MVI A,0P000110B
9185 D3BY 357 0UT REQ17 s SOFTWARE REQ TO CH 2
0107 F1 358 FOP PSW Y RESTORE PSW
@168 C9 35¢ RET
360
361 5 INTERRUPT BANDLER #1 TO WRITE COMMAND WORD
362 ; TO AMS511A WHEN AM9517A HAS FINISEED
363 j LOADING THE OPERANDS
364 ;
2189 F5 365 INTR1: POUSE PSW FSAVE PSW

Figure 7.4. DMA Interface Programming (Cont.)
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1515-11 8¢8@/8285 MACRO ASSEMBLER, V3.4 CHAP? PAGE S

10 0BJ LINE SOURCE STATEMENT

9104 3AP306 D  36€ LDA OPCODE iGET OPCODE

216D D3C1 367 OUT APUCR jWRITE TO COMMAND REGISTER
B16F F1 368 FOP PSW 7RESTORE PSW

911e FB 368 El FRE-ENABLE CPU INTERRUPTS
#4111 €9 378 RET

371
372 j INTERRUPT HANDLER #2 TO SET DONE FLAG
373 3 T0 INDICATE OPERATION IS COMPLETE
374 §
2112 F5 375 INTR2: PUSH PSW FSAVE PSW
9113 3E01 37€ MVI A,1
9115 3zp400 D 377 STA DONE2 i SET DONE FLAG
@118 F1 378 POP PSW sRESTORE PSW
$119 FE 379 El ;RE-ENAELE CPU INTERRUPTS
£11A C9 280 RET
381 i
382 § RAM AREA
383 i
84 DSEG
385 i
Z8€ OPCODE: DS 1 FAPU OPCODE SAVE AREA
387 DONE2: DS 1 i DONE FLAG
388 i
389 END

JUBLIC SYMEOLS

FXTERNAL STMBOLS

2ec1 APUDR A 0@C@ APUSR & @@C1 CH2ADR A @OB4
2035 CH3ADR A 0@B6 CH3CNT A @@B7 CEK1 C P@36
@B5E CLR17 A @8ED CMD17 A €0B8 DEMAND C €200
aees DLOOP2 C @917 DLOOP3 C 2825 DMAC A 0032
ooez DONE2 D 2004 EXEC C @OEF ILOOP1 A P@4P
2090 INIT1S C @@R3 INTR1 C @108 INTR2 C £112
0873 LLOOPZ C 8879 LOAD C 286C MOD17 A @@BB
@@ERF OPCODE D @0e3 PLOOP1 C @O3E PLOOP2 C 004D
ee62 POLL C ge3e REQ1? A @@BS RST? A 0838
oeee UICCR A @ec3 UICDR A @8C2 UICSR A @@C3

JSSBMBLT COMPLETE,  NO ERRORS

Figure 7.4. DMA Interface Programming (Cont.)
a1
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ODUCTION

offers some numerical values of comparing execu-
Dbatween Am3511A, Am8512 and their software coun-
wls. The software packages selected are the Intel
fioating point library and the Lawrence Livermore
BASIC (LLL BASIC). These two software packages
because the Intel format is the same as the Am9512
ision format and the LLL BASIC format is the same as
A floating point format. This should offer a reasonably
isive comparison.
i gxecution-time cycles tables, the cycles given for the
Aand Am9512 are from the issue of the command to the
on of the command exect™ times for loading and
ds are not d these times
nd on external hardware and also depend on whether the
on is & chain calculation. Similarly, the software cycles
gurled from the “Call” instruction to the “Ret” instruction of
point package. Operand setup time is also not

rement is conducted on an Intel MDS 800(R) system
\&n Advanced Micro Computers 95/6011 APU board and
012FPU board. The hostis a 2-MHz 80B0A. The clock for the
95/6012 board is derived from the 9.8304-MHz bus
by five to achieve a frequency of 1.96608 MHz.
athe main memory of the MDS 800 is dynamic, there is

CHAPTER 8
FLOATING POINT EXECUTION TIMES

one shift would be required for post-normalization. If the addend
and the augend have the same exponent, no exponent alignment
time is required. If the magnitude of the addend and the augend
are fairly close, only a few alignment shifts are required. If the
addend and augend are very different, the number of required
shifts is large. hence longer execution time.

The execution time of floating point subtraction not only has the
same exponent alignment time as in the floating point addition, it
also has a post-normalization time. Like floating peint addition,
the execution time lengthens as the magnitude of the minuend
diverges from the magnitude of the sublrahend. Unlike the float-
ing point add routine, the execulion time also lengthens as the
subtrahend approaches the value of the minuend. This is due to
the number of left shifts required to preduce a normalized result.

Table 8.1 shows the cycle times of Am9511A and LLL BASIC
floating point add and subtract routines. Table 8.2 shows the
cycle time of Am9512 and Intel floating point library execution
times. The software execulion times given have been normalized
for a 2-MHz BOBOA.

8.3 FLOATING POINT MULTIPLY/DIVIDE

EXECUTION TIMES

Unlike floating point add or subtract, the execution times of float-
ing point multiply or divide falls within a relatively narrow range
and is not dependent on the relative magnitudes of the operands.
Most multipli \ algorithms use a shift and add method. For

+0.5% uncerainty of software timing
ecause the bus clock is asynchronous to the CPU clock
alclock of the Am3511A and Am9512 Is a two-phase
from the single phase bus clock, there is a =2-clock
in the hardware measurements.

NG POINT ADD/SUBTRACT

TIMES

| point add and subtract usually share the same routine.
 point subtract is merely a change of sign of the sub-
d Is performed as floating point add. For the sake of
in this chapter, we assume the two operands are of
If the operands are different signs, the discussion
will apply 1o sublraction and vice versa.
tion time of floating point addition is mostly dependent
alignment time of the two operands, maximum of

such algorithms, the execution time dependency is mainly on the
number of 1's in the multiplier. The number of 1's in the multipli-
cand would not affect the execution time. The division execution
time dependency is more complicated because of the number of
division algorithms in use. In general, there is no simple way lo
predict the division execution time of a particular pair of operands
(Tables 8.3 and 8.4).

8.4 DOUBLE-PRECISION FLOATING POINT

EXECUTION TIMES

The Am9512 supports a double-precision (64-bit) floating point
format. No known 64-bit floating point library routines are avail-
able at this time. Some sample execution times are given. The
operands are selected over a representative range to give a
comprehensive average (Tables 8.5 and 8.6).




TABLE 8.1. Am9511A vs LLL BASIC FLOATING POINT ADD/SUBTRACT EXECUTION TIME COMPARISON

OPERAND #1
DEC. HEX.
5 23100000
5 B3A00000
5 23A02000
& 23400000
5 @3Aea302
5 @3rpeeee
5 e3rpecee
5 03400000
123 o7F6eeoe
.123 7DFBE76C
123 BTF62208
12345 @ECAE420Q
1.3578 @1ADCFAA
.200012  78C9539A4
234 Z8EABORD
-1.224 B81SDF3B6

OPERAND #2
DEC. HEX.
.0e8€ 7EQD4951
.006 79C49BA4
«E6 7CFS5C28E
-€ 02999999

[ eIceoeon

6e peEFeoRoe
€00 2r960000
6200  @LBIS@ED
456 @oF420r0
456  Q9E40800

. 456 7FES78D4
€va89e 11849920
24680  @FCeDe@e
240008 13460402
-678  BAAGREOR
12345 PECPE420
TOTAL

AVERAGE

AMO511
FADD FSUB
214 228
179 192
143 15€

o5 1e8

57 91
116 120
153 169
189 204
103 1e8
213 227
154 169
1ege 131
238 253
344 347
118 96
238 228
2660 2828
166.2

176.8 2858.5

LLLBASIC
FADD FSUB
3395 3884
3eoe 3508
2608 2p88
21ee 2578
1826 2185
2362 2281
2540 2805
2945 3186
2215 2137
3220 3467
2748 3241
2038 2460
3469 3727
4783 5025
2625 1920
389¢ 33€7

45736  4B777

Zp48.€




TABLE8.2. Am9512 vs INTEL FPAL LIB FLOATING POINT ADD/SUBTRACT EXECUTION TIME COMPARISON

DEC.

OPERAND #1

HEX.
42AP0000
42100000
40A02000
40AG0000
4PA00200
4gAceeoe
40AC0C00
40A 20000
42FE0000
3DFBE76D
42FE2000
4640E400
3FADCFAR
3748530EF
42642000
BFODF3E6

OPERAND #2

DEC. HEX.
8006 3A1D49852
006 3PC49RA6
.86 3D75C28F
.6 3F199994
6 40C00000
6@  427e000e
€o@ 44160000
€200  45BE800Q
45€  43E4Q0eQ
456  4JE40000
.456  OEE978D4
67890  478499¢0
24680  4€CQDOOE
340280  48A60400
-€78 (4208000
12245  464@E400
TOTAL
AVEFRAGE

AM@512
SADD SSUB
254 275
229 217
171 178
98 112
58 a9
128 123
169 177
212 219
114 1e9
264 283
192 183
114 14¢
300 3¢9
475 477
124 1e1
284 297
3iee 329€
1¢09.1

206.80 2069.6 2259.4

FPAL.LIB
FADD FSUB
2351 2568
1914 2152
2506 2724
1954 2178
1430 1734
2002 2165
2455 2712
1866 2159
1844 2@3¢€
2145 2424
1651 1878
1889 2279
2435 2715
1953 2231
2155 1911
2564 2284

33114 36152




TABLE 8.3. Am9511A vs LLL BASIC FLOATING POINT MULTIPLY/DIVIDE EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AM9511 LLLBASIC

DEC. HEX. DEC. EEX. FMUL FDIV FMUL FDIV

8 63400000 .00e6 76904951 174 157 8451 13013

5 P3A0E2R0 026 79C49BA4 174 178 8441 12856

5 B3A02020 .86 7CF5C28E 149 177 B264 12867

5 23400008 .6 20999999 174 157 8407 13382

5 @zZA0e0ee 6 83CePE00 173 178 8423 12835

5 NIA00000 €0  @6Fo0d00@ 148 179 8218 12892

5 @3A00002 6006 @QAS60000 173 155 8415 12214

5 B3A00020 €¢es  eDpBB@Re 175 179 8437 13020
123 Q7F6eeee 456  @9E4P000 148 156 8939 12713
.123 7DFRE76C 456 gor4oeee 148 157 18948 13373
1z2 ovFE0000 .45€6  7FEQ78D4 149 155 8965 12878
12345 QEC@E400 67890 11849900 173 157 §163 14305
1.3579 21ADCFAA 24680 grcepeee 147 179 18591 12149
.20p@12  7ECO539A 340800 12460400 149 157 18018 13395
234 0BEAQORH -678 BAASBER2@ 148 156 8781 13509
-1.234 B819DF3B6 12345  QECPE402 175 178 18971 12852

TOTAL 2577 2655 145432 209273
AVERAGE 161.1 165.9 9089.5 13979.6




TABLE 8.4. Am9512 vs INTEL FPAL LIB FLOATING POINT MULTIPLY/DIVIDE EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AM9512 FPAL.LIB

DEC. HEX. DEC. HEX. SMUL SDIV FMUL FDIV
5 40A00000 .e0e6 3A1L4952 234 250 3206 7757

5 40400000 006 3EC49EAB 256 235 3252 7905

L 40AG0000 .06 3D7EC28F 188 247 3ess 7975

5 40A0R000 .6 3F19999A 234 248 3245 7788

L | 40A0000€ € 4pcee0e 220 232 3e52 7955

5 40A00000 €@ 42700000 209 246 2897 7999

5 40420020 600 44160000 220 248 3972 7799

5 4¢A20000 €poe 45BEBQCR 220 246 3137 7853
122 42F60000 456 43E40000 2e1 248 2903 7820
<123 3DFBE7ED 456 43E40009 199 243 3e87 7834
123 42FEQ002 -456 3EEQ7BD4 219 236 3072 7822
12345 464PE470 67898 47849500 242 248 2124 7585
1.3579 3FADCFAB 24680 46000200 252 240 3139 7854
.zeee12 37495391 340000 48AC0400 219 228 3131 7776
234 4Z6A0000 -€78 4298000 2e1 224 2925 el
-1.234 BFODF3B6 12345 46408400 223 227 3214 7852

TOTAL 3539 2857 40644 1285215

AVERAGE 221.2 241.1 3102.8 7825.9
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TABLE 8.5. Am9512 DOUBLE PRECISION ADD/SUBTRACT EXECUTION TIMES

5
123
.123
123
12345
1.3879
200012
224

-1.234

OPERAND #1
HEX.
4014200000000200
4p14000000000000
4(14000000000028
42140000200020200
4@14000000080020
4p14600000000000
4014020000002000
4014000000222000
4@5ECA2000000020
3FRF7CED916872R2
4@5ECPOPGR000020
4pCB1CEBRRRORCREE
3FFS5PSF559B3DQ7C
3EES2A7Z7110E453
4P6T40000000C600
BFF3BE7ECBB43958

DEC.
. 2006
.0¢6
.06
.6

OPERAND #2
HEX.
3F43A9243@553261
3F789274BCE6ATEF9
SFAEBB51ERA51ERB
3FE2333333333333
4¢18p000C22000002
4p4E0000200200000
4PRZ(PCOCR200000
4Q0R7700000000000
427C800092200000
4p7CBQ00P0000008
3FDD2F1ASFRE76(8
4@F(P9320000000200
4@DR1 ADGRRACEEOE
4114C2R0000€0020
CRB5300000900000
4@CE10800000000¢C

TOTAL
AVERAGE

AMI512
DADD DSUB
1273 1310
1174 1211
1038 11905
868 891

720 T2
951 922
1ge1 1187
1229 1244
9¢6 877
1233 128@
172 1183
a7 960
1322 1352
2158 2232
914 861
13e9 1250
18165 18518
1135.3 1157.4
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TABLE 8.6. Am9512 DOUBLE PRECISION MULTIPLY/DIVIDE EXECUTION TIMES

OPERAND #1 OPERAND #2 AM9512
HEX. DEC. HEX. DMUL DDIV
4014000000000200 .06 BF43A9R2A30553261 18180 4857

4p14¢00000002000 . 006 3F788374BCEATEF9 1814 4983
4@14P00000000000 .€6 3FAEBRS1EBBS1ERS 1779 5048
4214000000000000 .6 JFE33333533333332 1841 5037
4914000200000200 €  4018002000020200 1785 4702
4914020000002020 €@ 4¢4EQ0A000000000 1751 4699
4914p¢0A0200000200 6¢@  40B2CR2000000000 1787 4618
4014000020002000 6000  4QR77C00D0P00Q00 1786 4702
405ECP02C2002000 456 4p7C82000000020002 175@ 4671
IFBF7CEDN916872R¢ 456 4p@7C8002020800020 1756 4748
4@5ECCEPOR000000 456 3FDD2F1ASFRE7E6CE 1744 4936

40C81C8000020C00 6789¢  4PFO932000000000 187 4696
3FFSROF556B3L27C 24680  4@DE1ARDO2CRADRQ 1762 4788
3TE92A73T112E453 340209  4114C0BPC0PP0200 1755 4764
4P61400000000000 -678 cegs3pogeaeedeee 1759 4672
BFF3PE7ECHB43958 12345 40C81CB000000000 1802 4768

TOTAL 28479  7E655
AVERAGE 1779.8 47%€.9
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CHAPTER 9
TRANSCENDENTAL FUNCTIONS OF Am9511A

9.1 INTRODUCTION

The word “'transcendental” is defined as “a function that cannot
be expressed by a finite number of algebraic operations.” Three
examples of such functions are sine, logarithmic and exponentia-
tion. The Am951 1A performs a number of such functions, and this
chapter describes the algorithms adopted by the device.

9.2 CHEBYSHEV POLYNOMIALS

Computer approximations of transcendental functions are often
based on some form of polynomial equations, such as

1(x) = ag + agx + agx® + agxd +agxt + ...
The most well-known polynomial for evaluating transcendental
functions is the Taylor series
(a) (X — a)*

k!

Where fk(a) is the kih derivative of the function f. Taylor series
usually works well when (x — a) is a small number. When the
value of (x — a) is large, the number of Taylor series terms
required to evaluate to a given accuracy becomes large. The
primary shortcoming of an approximation in this form is that it
typically exhibits very large errors when the magnitude of | X | is
large, although the errors are small when | X | is small. With
polynomials in this form, the error distribution is markedly un-
even over any arbitrary interval. To avoid this shortcoming, there
is a set of approximating functions that not only minimizes the
maximum error but also provides an even distribution of errors
within the selected data representation interval. These are
known as Chebysheve polynomial functions and are based
upon the cosine functions, The Chebyshev polynomials T(x) are
defined as follows.

f(x) = fa) +

Tolx) = cos(ncos™'x)
The various terms of the Chebyshev series can be computed as

Toplx) = cos(0) = 1

Tyx) = cos(oos™'x) = x

To(x) = cos(2cos™ 'x) = 2cos2(cos~1x) —1 = 2x2 — 1
in general, the next term in the ‘C’ series can be recursively
derived from the previous term as the following: —

Ta(x) = 2x(Ty—4(x)) = To_p(x) forn =2
the terms Ty(x), T4(x), T5(x) and Tg(x) are given below for
reference

Ta(x) = 4x3 — 3x

Talx) = 8x% - 8x2 + 1

Tslx) = 16x5 — 2063 + 5x

Tglx) = 32x8 — 48xF + 1832 — 1
It is not the intent of this book to go into the detailed derivation of
the Chebyshev series. For readers interested in the formal deri-
vation, references 1 and 3 are recommended. The Chebyshev
series is given as follows:

®
) =5 Co + I Calalx)
n=1

here
TR T
el -

For a given accuracy, only a finite number of terms is required.

The Am8511A selects the number of terms required by differert
functions o provide a mean relative error of about one part in 107
The coefficients C,, are all precalculated and stored in the cor-
stant ROM.

Each of the transcendental functions in the Am3511A uses the
Chebyshev polynomial series except the square root function’
Each function is a three-step process as fallows:
Range Reduction ~
The input argument of the function is transformed to tall withina
range of values for which the function can be computed toa
valid resull. For example, since functions like sine and cosing
ara periodic for multiples of radians, input arguments for thess
functions are converted to lie within a range of
Sl =T
0towmor 7 o+
Chebyshev polynomial evaluation —
This step is the same for all functions. The algebraic sum of
the appropriate number of terms of the Chebyshev series is
computed.
Postprocessing —
Some functions, such as sine and cosine, need postprocessing
of the result such as sign correction.
The following sections give a detailed function-by-function de-
scription of each transcendental function in the Am9511A
9.3 THE FUNCTIONS CHEBY AND ENTIER
Two functions are used in the following sections. The first one s
CHEBY. This function evaluates the Chebyshev polynomial
series n—=1
f(x) = 12Cq + ¥ CyTilx)
k=1

The function is called by CHEBY (x, ¢, n) where x is the inpul
argument after any necessary preprocessing; ¢ is the coefficient
list for the given function; and n is the number of Chebyshev
polynomial terms used.
The FORTRAN program to implement the cheby function is as
follows:
FUNCTION CHEBY (X, C, N)
Dimension C(12), T(12)

TA) =1

TE@) =X

CHEBY = 0.5 X(1) + C(2) * T(2)
DO 1001 =3, N

TH=2*X*T-N-T(l-2)
100 CHEBY = CHEBY + C{l) * T(l)
This program is not written to minimize execution time or code
space butforits clarity. A program thatimproves execution speed
but is somewhat more obscure is as follows:

FUNCTION CHEBY (X, C, N)

DIMENSION C(12). Ti12)

B=0

D = C(N)
X2=2*X
DO100I =N, 2 -1
A=B

B=D

100D=X2*B-A+C(l-1)
CHEBY = (D — A)2
END



The secand function is called ENTIER. Entier is the French word
Irinteger. The entier function is similar to the FORTRAN integer
inction, except the integer function rounds down o the nearest
rteger closer 1o zero whereas the entier function rounds down to
e nearest integer of a lower value. In other words, if the number
kgrealer than or equal to zero, both functions are identical. If the
fumber is negative, such as —2.5, INT (—2.5) = -2, ENTIER
(-25) = -
AFORTRAN program to implement the enlier function is as
Tobows:

FUNCTION ENTIER (X)

FLT.0) X = X —1

ENTIER = INT (X)

END

94 SINE
' Anyargument of the sine function can be reduced to a value from
-#(2 1o +#/2. Hence the range reduction is

X=X"*2/x

X=X —4* Entier (X + 1)/4)

IXGTNH X =2-X
This reduces the input argument to a range from —11o +1. The
Chebyshev polynomial evaluation is

Sin (X) = X * CHEBY (2X2 — 1, Csin, Nsin)
mcalmsanarrayul d Ch coeffici
sne, and Nsin is the number of Chsbyshev polynom:al series
wed, In the case of AmI511A

Nsin = 6

Csing = 2.5525579

Csiny = —0.2852616

Csin, = 9.118016 x 103

Csing = —1.365875 x 104

Csing = 1.184962 x 106

Csing = —6.702792 x 10~

for

W

W
ot
-~ —w® ~107"® 107000 g 10° 0’
DATA VALUES (RADIANS)
MOS-008
Figure 9.1. Sine
45 COSINE

fayarqument of cosine function can be reduced to arange from 0
b= Hence, the formulas for cosine range reduction are
X=X"* 2l
X=4* Entier (X + 2)/4) - X +1
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HXGTYX =2 - X

The cosine function is now evaluated the same way as the sine
function

cos(x) = X * CHEBY (2x2 — 1, Csin, Nsin)
where Csin and Nsin are the same as the sine function

o
wi
H
&
E w [
4
g
ot
e 1 5 ¢ L 1 ]
.lﬂm —1w° 7 U o ID" W'
DATA VALUES (RADIANS)
MOS-008
Figure 9.2. Cosine
9.6 TANGENT

Any argument for tangent can be reduced to a value from —w/2to
+/2. This is the same range reduction algorithm as the sine
function (Figure 9.4).

X=X"*2m
X = X — 4 * Entier ((X + 1)/4)
Y=X

HY.GTHX =2 - X
The Chebyshev polynomial evaluation is
Tan(X) = X * CHEBY(2X2 - 1, Ctan, Ntan)
A postprocessing step is also required
If (Y.GT.1)Tan(X) = 1/Tan(X)

w?
~10'0 T w® e

DATA VALUES [RADIANS]

~10®

MOS-010

Figure 9.4. Tangent



The constants used in the Am9511A are as follows:

Ntan = 9
Ctang = 1.7701474

Ctan, = 1.0675393 x 10~
Clany = 7.5861016 x 1073
Clang = 54417038 x 1074
Ctang = 3.9066370 x 105
Ctang = 2.8048161 x 106
Clang = 2.0137658 x 107
Ctan; = 14458187 x 108
Clang = 1.0380510 x 109

9.7 ARCSINE

The argument of arcsine must be less than or equal to 1, or
else an input error is detected. Hence, range reduction is not
necessary.

There are two different Chebyshev polynominal expansion used
depending on the initial value of X. If X2 = 1/2 then the following
formula is used

Asin(X) = x*2* CMEB\'(‘hc2 ~ 1, Casin, Nasin)
1f1/2 < x2 = 1 then

Asin (X) = sign (X) * 5~ * /223"
CHEBY (3 — 4x2, Casin, Nasin)

Where sign (X) is the sign of X. The values of Casin and Nasin
used in the Am8511A are as follows:

Nasin = 10

Casing = 1.4866665

Casin, = 3.8853034 x 102

Casin, = 2,8854414 x 103

Casing = 2.8842183 x 104

Casing = 3.3223672 x 105

Casing = 4.1584779 x 106

Casing = 5.4965045 x 10”7
Casing = 7.5500784 x 10~ 8
Casing = 1.0671938 x 108
Casing = 1.5421800 x 10~ 9

9.8 ARCCOSINE

The arccosine is obtained from arcsine by using the triganomefré
identity.

Arccosine (x) = 2l — arcsine (x)

L

- L L 1 i
- w 1010
DATA VALUES

~u®

MOS-012

Figure 9.5. Inverse Cosine

9.9 ARCTANGENT

The range reduction of the arctangent function involves taking the
reciprocal of the input argument if the absolute value of the inpy
argument is greater than 1.

U=X
If (ABS (U).GT.1)X = 1/X

The Chebyshev polynomial evaluation is
Atan(X) = X * Cheby(2X2 — 1, Catan, Natan)

The postp requirement is

108

DATA VALUES

-w® -0 w0 10

MOS-011

Figure 9.3. Inverse Sine
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If (U.GT.1) Atan (X} = =/2 — Atan (X)
I (U.LT.~1) Atan (X) = —m/2 — Atan (X)

The value of Natan and Catan used in the Am9511A are:

Natan =11
Catang = 17627472
Catan, = —1.0589292 x 10~
Catan, = 1.1135842 x 10~2
Catany = —1.3811950 x 103
Catan, = 1,8574297 x 10~
Catang = -2,6215196 x 10~
Catang = 3.8210366 x 106
Catan; = -5.6991862x 107
Catang = 8.6488779 x 1078
Catang = —1.3303384 x 10~ 8
Catanyy = 2.0685060 x 1079
Catany; = —3.2448600 x 10~ 10
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3.10. EXPONENTIATION (Figure 9.7)

The range reduction for the exponentiation function is performed
ty the following formulas

X = X * Logge

N = 1 + Entier (X)

The Chebyshev polynomial evaluation is

Exp(X) = 2N * Cheby (2*(N — X) — 1, Cexp, Nexp)

No posiprocessing is required for the exponentiation function.
The values of Nexp and Cexp used by Am9s11A are:

Nexp = 8

Cexpg = 1.4569999

Cexpy = —2.4876243 x 10~

Cexp, = 2.1446556 x 1072

Cexpa = —1.2357141 x 1073

Cexpy= 53453058 x 105

Cexps = —1.8506907 x 108

Cexpg = 5.3411877 x 1078

Cexpy= —1.3215160 x 109
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I S 100
DATA VALUES
MUS-016
Figure9.7. ex

Figure 9.6. Inverse Tangent

9.11. NATURAL LOGARITHM (Figure 9.8)

Any input argument to a logarithm function that is less than or
equal to zero will be returned as an error input. No preprocessing
or postprocessing is necessary for all positive input X.

LN(X) = CHEBY (4*Mant(X) — 3, CLN, NLN) + (Expo(X) - 1)
*LN2

Where Mant(X) is the mantissa value of X and expo (X) is the
exponen! value of X.

The value of NLN and CLN used in the Am9511A are:

NLN =11

CLNy = 7.5290563 x 107!
CLN,; = 3.4314575x 107"
CLN, = 29437253 x10~2
CLN; = 3.3670893 x 103
CLN; = -4.3327589 x10 %
CLNg = 5.9470712x 10~5
CLNg = —8.5029675 x 10~6
CLN, = 1.2504674 x 1078
CLNg = —1.8772800 x 107
CLNg = 2.8630251 x 1078
CLNgg = -4.4209570 x 1079

9.12 LOGARITHM TO BASE 10 (COMMON LOGARITHM)

The common logarithm s derived from the natural logarithm by
the equation

LOG(X) = LN(X) * LOGyqe
where
LOG ge = 0.4342945

9.13 X TO THE POWER OF Y

The function X 1o the power of Y is derived from the following
equation
XY = g(Y'LN{X))

9.14 SQUARE ROOT

The square root function (Figure 9.9) in the Am3511A is the only
derived lunction that does not use the Chebyshev polynomials. It
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Figure 9.8. Natural Logarithm

uses a ¢ of linear app: 1 and the Newton-
Ralfson successive approximation methods. The square root
algorithm adopted is divided into three parts:

(a) Range reduction —
The input argument is divided into the exponent and the
mantissa. If the exponentis odd, the expenentis incremented
by 1 and the mantissa Is divided by 2. If the input exponent is
even, the above step is skipped.

(b) Linear Approximation —
The mantissa is now a number greater than or equal to 1/4
and less than 1. The curve line in Figure 9.10 represents the
square root of all numbers between 1/4 and 1. The straight
line represents the first-order approximation for the square
root of the number. To select the best straight line, we must
minimize the maximum relative error between the straight
line and the curve line. This would reduce the worst case error
to @ minimum. This line is known as the minimax line.

The method used to compute the best linear approximation line is

as follows:

Letm = Slope of the minimax line

Letb Y intercept of the minimax line

Let ¥ = The function of the minimax line
such that

Y=mx+b

The relative error between the actual square root value and the
first-order approximation is
mx+ b— /X

E(x) = =

Figure 9.10 shows that the absolute value of E(x) is a maximum at
the two extremities (x = 1/4 and x = 1) and at a point where the
slope of the curve E{x) = 0, or dE/dx = 0.

dE _ d (mx+b-Vx
Dx dx Vx @1
=9 e D pyn-d
dx dx dx

d

=m— x2 + bi- x-% -0
dx dx

Figure 9.9. Square Root
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The relative errors at the extremities are given by

m
g T T
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The minimax line requires these maximum errors to be equs

M oiob-1=m+b-1
2

b—M =g
2
bgw
m 2
m=2b
from equations 9.1 and 9.4
o e = HL
m 2




Therefore, the maximum error in the middle occurs when X = 1/2.
The minimax line requires these errors to be equal in magnitude.

) - e - -£()

(9.6)
@.7)

From equations 9.3 and 9.5
E{f)=3b -1 (9.8)

From equations 9.6, 9.7 and 9.8

=-(@8-1=1-3b

From 9.5
m=2b = 0.6829150

Therefore, the minimax line is given by
Y = 68629150x + 0.34314575

- This is the equation used in Am9511A for the first-order linear
approximation. Therefore

Xo = 0.68629150x + 0.34314575

(t) Newton-Ralfson successive approximation —
After the first-order approximation (Xg) is obtained, the
Am8511A executes two iterations of the Newton-Ralfson ap-
proximation

Xy = (XXg + Xo)/2
Xp = (XXq + Xq)i2

And the result is given by
SQRT(X) = x, * 2E/2

AFORTRAN function o illustrate the above algorithm Is given
below:
FUNCTION ROOT (X)
INTEGER EXPO, LSB
REAL MANT, X0, X1, X2
EXPO = INT (LOG(X)/LOG(2)) + 1
MANT = X/2**EXP
LSB = MOD(EXPO, 2)
IF (LSB.EQ.0) GOTO 100
c EXPONENT IS ODD
EXPO = EXPO + 1
MANT = MANT/2.0
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100 X0 = 0.68629150* Mant + 0.34314575
X1 = (X/X0 + X0)/2.0
X2 = (X/X1 + X1)/2.0

Root = (2**(EXPO/2))* X2
End

o, ““}wm'w
= /
| |
E st ‘7/{ F— - E
4
A
2
a 1 |
LA

Figure 9.10. Square Root Computation

9.15 DERIVED FUNCTION ERROR PERFORMANCE

Since each of the derived functions is an approximation of the true
function, results computed by the Am9511A are not always exact.
In order to quantify the error perlormance of the component more
comprehensively, the following graphs have been prepared.
Each function has been 1 with a statisti ignificant
number of diverse data values, spanning the allowable input data
range, and resulting errors have been tabulated. Absolute errors
(that is, the number of bits in error) have been converted to
relative errors according to the following equation:

Absolute Error

\ati -
Relative Error True Result

This conversion permits the error to be viewed with respect to the
magnitude of the true result. This provides a more objective
measurement of error performance since it directly translates to a
measure of significant digits of algorithm accuracy.

For example, if a given absolute error is 0.0001 and the true result
isalso 0.0001, itis clear that the relative erroris equal to 1.0 (which
implies that even the first significant digit of the result is wrong.
However, if the same absolute error is computed for a true result
of 10000.0, then the first six significant digits of the result are
correct (0.001/10000 = 0.0000001).

Each of the following graphs was prepared lo illustrate relative
algorithm error as a function of input data range. Natural
logarithm is the only exception; since logarithms are typically
additive, absolute error is plotted for this function.

Two graphs have not been included in the following fig-
ures: common logarithms and the power function (XY). Common
logarithms are computed by multiplication of the natural
logarithms by the conversion factor 0.43429448 and the error
function is therefore the same as that for natural logarithm. The



power function is realized by combination of natural log and REpwp = REgxp + X(AEj)

exponential functions according to the equation where
XY = g¥inX) REpyp = relative error for power function
The error for the power function is a combination of that for the REgxp = relaive arror for expanertial lu{nclion
logarithm and exponential functions. Specifically, the relative AE|, = absolute error for natural logarithm
error for PWR is expressed as X = value of independent variable in xY
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AmM9511A

Arithmetic Processor

DISTINCTIVE CHARACTERISTICS

# 2,3 and 4MHz operation

# Fixed point 16 and 32 bit operations

4 Floating point 32 bit operations

# Binary dala formats

# Add, Subtract, Multiply and Divide

+ Trigonometric and inverse trigonometric functions
# Square roots, logarithms, exponentiation

# Floal to fixed and fixed to float conversions

# Stack-oriented operand storage

# DMA or programmed I/O data transfers

» End signal simplifies concurrent processing

# Synchronous/Asynchronous operations

» General purpose B-bit data bus interface

# Standard 24 pin package

4 +12 volt and +5 volt power supplies

# Advanced N-channel silicon gate MOS technology

GENERAL DESCRIPTION

The Am3511A Arithmetic Processing Unit (APU) is a monalithic
MOS/LSI device that provides high performance fixed and
floating point arithmetic and a variety of floating point
trigonometric and mathematical operations. It may be used to
enhance the computational capability of a wide variety of
processor-criented systems.

All transters, including operand, result, status and command
information, take place over an 8-bit bidirectional data bus.
Operands are pushed onto an internal stack and a command
is Issued to perform operations on the data in the stack. Re-
sults are then available to be retrieved from the stack, or addi-
tional commands may be entered.

Transfers to and from the APU may be handled by the

usiny 1/0, or
may be handled by a direct memory access controller for im-
proved perf Upon pl of each the

APU issues an end of execulion signal that may be used as
an interrupt by the CPU to help coordinate program execution.

BLOCK DIAGRAM

CONNECTION DIAGRAM

Top View
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Note: Pin 1 is marked for orientation.
ORDERING INFORMATION
Package 2 Maximum Clock Frequency
Type Temperature 2MHz 3MHz 4MHz
0°C = Tp = +70°C Am9511ADC Am8511A-1DC Ama511A-4DC
Hermetic DIP | —40°C = Tp = +85°C Am9511ADI Am9511A-1D1
-55°C = Ta = +125°C | Am9511ADMB | Am9511A-1DMB
018928-MMP
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Am9511A

INTERFACE SIGNAL DESCRIPTION

VCC: +5V Power Supply
VDD: +12V Power Supply
VSS: Ground

CLK (Clock, Input)

An external timing source connected to the CLK input provides
the necessary clocking. The CLK input can be asynchronous to
the RD and WR control signals.

RESET (Reset, Input)

A HIGH on this input causes initialization. Reset terminates any
operation in progress, and clears the status register to zero, The
internal stack pointer is initialized and the contents of the stack
may be affected but the command register is not affected by the
resel operation. After a reset the END output will be HIGH, and
the SVREQ output will be LOW. For proper initialization, the
RESET input must be HIGH for at least five CLK periods following
stable power supply voltages and stable clock.

€/D (Command/Data Select, Input)

The G/D input together with the RD and WR inputs determines
the type of transfer to be performed on the data bus as follows:

c/D| RD |WR Function
L H L Push data byte into the stack
L H Pop data byte from the stack

H H L Enter command byte from the dala bus
H L H Read Status
X L L Undefined

L = LOW

H = HIGH

X = DONT CARE

END (End of Execution, Output)

A LOW on this output indicates that execution of the current
command is complele. This output will be cleared HIGH by ac-
tivating the EACK input LOW or performing any read or write
operation or device Initialization using the RESET. If EACK is
tied LOW, the END output will be a pulse (see EACK descrip-
tion). This is an open drain output and requires a pull up 1o +5V.

Reading the status register while a command execution is in
progress is allowed. However any read or write operalion clears
the flip-flop that generates the END output. Thus such continu-
ous reading could conflict with internal logic setting the END
flip-flop at the completion of command execution.

EACK (End Acknowledge, Input)

This input when LOW makes the END output go HIGH. As men-
tioned earlier LOW on the END output signals completion of a
command execution. The END output signal is derived from an
internal flip-flop which is clocked al the completion of a com-
mand. This flip-flop is clocked to the reset state when EACK is
LOW. Consequently, if the EACK is tied LOW, the END output
will be a pulse that is approximately one CLK period wide.

SVREQ (Service Request, Output)

A HIGH on this output indicates completion of a command. In
this sense this output is same as the END outpul. However,
whether the SVREQ output will go HIGH at the ofa

Also, the SVREQ will be automatically cleared after completion
of any command thal has the service request bit as 0.

SVACK (Service Acknowledge, Input)

A LOW on this input activates the reset input of the flip-fiop
generating the SVREQ output. If the SVACK input is perma-
nently tied LOW, it will conflict with the intenal setting of the
flip-fiop to generate the SVREQ output. Thus the SVREQ indi-
cation cannot be relied upon if the SVACK is lied LOW.

DB0-DB7 (Bidirectional Data Bus, Input/Output)

These eight bidirectional lines are used to transfer command,
status and operand information between the device and the host
processor. DBO is the least significant and DB7 Is the most
significant bit position. HIGH on the data bus line corresponds to
1 and LOW corresponds to 0.

When pushing operands on the stack using the data bus, the
least significant byte must be pushed first and most significant
byte last. When popping the stack to read the result of an opera-
tion, the most significant byte will be available on the data bus
first and the least significant byte will be the last. Moreover, for
pushing operands and popping results, the number of transac-
tions must be equal to the proper number of bytes appropriale
for the chosen format. Otherwise, the internal byte pointer will
not be aligned properly. The Am9511A single precision format
requires 2 bytes, double precision and floating-point formats re-
quire 4 bytes.

TS (Chip Select, Input)

This input must be LOW to accomplish any read or write opera-
tion to the Am9511A.

To perform a write operation data is presented on DBO through
DB?7 lines, C/D is driven to an appropriate level and the CS inpul
is made LOW. Howaever, actual writing into the Am3511A cannol
start until WR is made LOW. After initiating the write operation
by a WR HIGH to LOW transition, the PAUSE output will go
LOW momentarily (TPPWW).

The WR  input can go HIGH after PAUSE goes HIGH. The data
lines, C/D input and the TS input can change when appropriate
hold time requirements are satisfied. See write timing diagram
for details.

To perform a read operation an appropriate logic level is estab-
lished on the C/D input and CS is made LOW. The Read opera-
tion does not start until the RD input goes LOW. PAUSE will go
LOW for a period of TPPWR. When PAUSE goes back HIGH
again, it indicates that read operation is complete and the re-
quired information is available on the DBO lhmugh DB7 lines.
This information will remain on the data lines as long as RD input
is LOW. The AD input can return HIGH anytime after PAUSE

goes HIGH. The CS input and C/D inputs can change anytime

after AD returns HIGH. See read timing diagram for defails.

RD (Read, Input)

A LOW on this input is used to read information from an internal
location and gate that information on to the data bus. The cs
input must be LOW to accomplish the read operation. The CID

command or not is determined by a service request bit in the
command register. This bit must be 1 for SVREQ to go HIGH.
The SVREQ can be cleared (i.e., go LOW) by activaling the
SVACK input LOW or initializing the device using the RESET.

__Eul what internal location is of interest. See C/D,

CS input descriptions and read timing diagram for details. If the
END output was LOW, performing any read operation will make
the ‘END output go HIGH after the HIGH to LOW transition of the,
RD input (assuming TS is LOW).
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WA (Write, Input)

ALOW on this input is used to transfer information from the data
bus into an internal location. The CS must be LOW fto ac-
complish the write operation. The C/D determines which internal
location is to be written. See C/D, TS input descriptions and
write timing diagram for details.

If the END output was LOW, performing any write operation will
make the END output go HIGH after the LOW to HIGH fransition
of the WR input (assuming CS is LOW).

PAUSE (Pause, Output)
This output is a handshake signal used while performing read or
write transactions with the Am9511A. A LOW at this output indi-
cates that the Am9511A has not yet completed its information
transfer with the host over the data bus. During a read operation,
after CS went LOW, the PAUSE will become LOW shortly (TRP)
afier AD goes LOW. PAUSE will retum high only after the data
bus contains valid output data. The CS and RD should remain
LOW when PAUSE is LOW. The RD may go high anytime after
PAUSE goes HIGH, During a write operation, after C8 went
LOW, the PAUSE will be LOW for a very short duration
(TPPWW) after WR goes LOW. Since the minimum of TPPWW
is 0, the PAUSE may nol go LOW at all for fast devices. WR may
go HIGH anytime after PAUSE goes HIGH.

FUNCTIONAL DESCRIPTION

Major functional units of the Am9511A are shown in the block
diagram. The Am9511A employs a microprogram controlled
stack oriented architecture with 16-bit wide data paths.

The Arithmetic Logic Unit (ALU) receives one of its operands
from the Operand Stack. This stack is an 8-word by 16-bit 2-port
memory with last in-first out (LIFO) attributes. The second
operand to the ALU is supplied by the internal 16-bit bus. In
addition to supplying the second operand, this bidirectional bus
also carries the results from the output of the ALU when re-
quired. Writing into the Operand Stack takes place from this
internal 16-bit bus when required. Also connected to this bus are
the Constant ROM and Working Registers. The ROM provides
the required constants to perform the mathematical operations
(Chebyshev Algorithms) while the Working Regislers prcwde
storage for the intermediate values during

bus through appropriate interface and buffer circuitry. Multi-
plexing facilities exist for bidirectional communication between
the internal eight and sixteen-bit buses. The Stalus Register and
Command Register are also accessible via the eight-bit bus.

The Am9511A operations are controlled by the microprogram
contained in the Control ROM. The Program Counter supplies
the microprogram addresses and can be partially loaded from
the Command Register. Associated with the Program Counter is
the Subroutine Stack where retumn addresses are held during
subroutine calls in the microprog The Mics

Register holds the current microinstruction being executed. This
register facilitales pipelined microprogram execution. The In-
struction Decode logic generates various internal control signals
needed for the Am9511A operation.

The Interface Control logic receives several external inputs and
provides handshake related outputs to facilitate interfacing the
AmY511A to microprocessors.

COMMAND FORMAT

Each command entered into the Am3511A consists of a single
8-bit byte having the format illustrated below:

Tl OPERATION |
SVAEQ SINGLE = FIXED CODE |
e I RS
7 6 5 4 3 2z 1 a

0189283

Bits 0-4 select the operation to be performed as shown in the
table. Bits 5-6 select the data formal for the operation. If bit 5
is a 1, a fixed point data format is specified. If bit 5 is a 0,
floating point format is specified. Bit & selects the precision of
the data to be operated on by fixed point commands (if bit 5
= 0, bit & must be 0). If bit & is a 1, single-precision (16-bit)

are indi if bit 6 is a 0, double-pi (32-bit)
operands are indicated. Results are undefined for all illegal
combinations of bits in the command byte. Bit 7 indicates
whether a service request is to be issued after the command
is execuled, If bit 7 is a 1, the service request output
(SVREQ) will go high at the conclusion of the command and
will remain high until reset by a low level on the service
acknowledge pin (SVACK) or until completion of execution of

Communication between the external world and the Amg511A
lakes place on eight bidirectional input/output lines DBO through
DB7 (Data Bus). These signals are gated to the internal eight-bit

a ding command where bit 7 is 0. Each command is-
sued to the Am9511A requests post execution service based
upon the state of bit 7 in the command byte. When bit 7 is a
0, SVREQ remains low.
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COMMAND SUMMARY

Command Code C
7]6]5[4]3[2]1]0] Mnemonic Jommand:Descnelion
FIXED-POINT 16-BIT
sr | 1 1 0 1 1 o ] SADD Add TOS to NOS. Result to NOS. Pop Stack.
sr| 1 1 0 1 1 o 1 ssus Subtract TOS from NOS. Result to NOS. Pop Stack.
sr| 1 1 0 1 1 1 1] SMUL Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
sr| 1 1 1 [} 1 1 0 SMUU Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
s |1 1 [ 1 1 1 1 SDIV Divide NOS by TOS. Result to NOS. Pop Stack.
FIXED-POINT 32-BIT
st | 0 1 0 1 1 0|0 DADD Add TOS to NOS. Result to NOS. Pop Stack.
st | 0 1 0 1 1 ] 1 DsSuB Subtract TOS from NOS. Result to NOS. Pop Stack.
st | 0 1 0ol 1 1 1] DMUL Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
s | 0 1 1 0| 1 1 [+] DMUU Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
e |8 1 o 1 1 1 1 DoV Divide NOS by TOS. Result to NOS. Pop Stack.
FLOATING-POINT 32-BIT
st | O ] 1 0 (] 0 0 FADD Add TOS to NOS. Result to NOS. Pop Stack.
st | 0| 0O 1 0|6 |9 1 FsuB Subtracl TOS from NOS. Resull to NOS. Pop Stack.
sr| 0|0 1 ol o1 [¢] FMUL Multiply NOS by TOS. Result to NOS. Pop Stack.
sr| 0| O 1 ol 0|1 1 FDIV Divide NOS by TOS. Result to NOS. Pop Stack.
DERIVED FLOATING-POINT FUNCTIONS
srlojlojojoajof|o]l1 SQRT Square Root of TOS. Result in TOS.
sr| 0|0 |00 0 1 o SIN Sine of TOS. Result in TOS.
ss|0|0O|0]| 00 1 1 cos Cosine of TOS. Result in TOS.
st | 0 0 1] a 1 [ 0 TAN Tangent of TOS, Result in TOS.
sr| 0 o 0 ] 1 0 1 ASIN Inverse Sine of TOS. Result in TOS.
sc|lojof0o]0|1 110 ACOS Inverse Cosine of TOS. Result in TOS.
sr| 0| O o o 1 1 1 ATAN Inverse Tangent of TOS. Result in TOS.
sr| 0 1] a 1 [} o ] LOG Common Logarithm (base 10) of TOS. Result in TOS.
sr| 0| 0|0 1 0|0 1 LN Natural Logarithm (base e) of TOS. Result in TOS
ss|]ojojo|1]0|t]o0 EXP Exponential (%) of TOS. Result in TOS.
ss|]ojofof[1]of1]1 PWR NOS raised to the power in TOS. Result in NOS. Pop Stack.
DATA MANIPULATION COMMANDS
st| 0 0 o o 0 0 0 NOP No Operation
sr| O 1] 1 1 1 1 1 FIXS Convert TOS fram floating point to 16-bit fixed point format.
ss| 0|01 1 1 3 1] FIXD Convert TOS from floating point to 32-bit fixed point format.
st | O ] 1 1 1 "] 1 FLTS Convert TOS from 16-bit fixed point to floating point format.
st | 0O 0 1 1 1 ] 0 FLTD Convert TOS from 32-bit fixed point to fleating point format.
st | 1 1 1 1] 1 o 0 CHsS Change sign of 18-bit fixed point operand on TOS.
sr| 0 1 1 1] 1 o ] CHSD Change sign of 32-bit fixed point operand on TOS.
st | O o 1 0 1 0 1 CHSF Change sign of floating point operand on TOS.
st | 1 1 1 0 1 1 1 PTOCS Push 16-bit fixed point operand on TOS to NOS (Copy)
st | @ 1 1 1] 1 1 1 PTCD Push 32-bit fixed point operand on TOS to NOS. (Copy)
ss| 0|0 1 1] 1 1 1 PTOF Push floating point operand on TOS to NOS. (Copy)
s |1 1 1 1 0|0 4] POPS Pop 16-bit fixed point operand from TOS. NOS becomes TOS.
st | 0 1 1 1 ojofo0 POPD Pop 32-bit fixed point operand from TOS. NOS becomes TOS.
sr| 0 a 1 1 ol 0 1] POPF Pop floating point operand from TOS. NOS becomes TOS,
st |1 1 1 1 o]0 1 XCHS Exchange 16-bit fixed point operands TOS and NOS.
st | 0 1 1 1 0|0 1 XCHD Exchange 32-bit fixed paint operands TOS and NOS.
st | 0 L] 1 1 1] (1] 1 XCHF Exchange floating point operands TOS and NOS.
sr | 0 [} 1 1 o 1 1] PUPI Push floating point constant “z" onto TOS. Previous TOS becomes NOS.
NOTES:

1. TOS means Top of Stack. NOS means Next on Stack.

2. AMD Application Brief “Algorithm Details for the Amg511A
APU" provides detailed descriptions of each command func-
tion, including data ranges, accuracies, stack configurations,
elc.

Many commands destroy one stack location (bottom of
stack) during development of the result. The derived func-
tions may destroy several stack locations. See Application
Brief for details.

@

@,

The trigonometric functions handle angles in radians, not
degrees.

No remainder is available for the fixed-point divide functions.
Results will be undefined for any combination of command
coding bits not specified in this table.
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COMMAND INITIATION

After properly positioning the required operands on the stack, a
tommand may be issued. The procedure for initialing a com-
mand execution is as follows:

Enter the appropriate command on the DBO-DB7 lines.

excepl for format conversion commands. Thus when the result
is taken from the stack, the lotal number of bytes popped out
should be appropriate with the precision - single precision re-
sults are 2 bytes and double precision and floating-point results
are 4 bytes. The following procedure must be used for reading
the result from the stack:

Establish HIGH on the C/D input.

Establish LOW on the TS input.

Establish LOW on the WR input after an appropriate set up
time (see liming diagrams).

Sometime afler the HIGH to LOW level transition of WR
input, the PAUSE output will become LOW. After a delay of
TPPWW, it will go HIGH to acknowledge the write operation.
The WR input can return to HIGH anytime atter PAUSE going
HIGH. The DB0-DB7, C/D and TS inputs are allowed to
change after the hold time requirements are salisfied (see
timing diagram).

Anattempt lo issue a new command while the current command
execution is in progress is allowed. Under these circumstances,
the PAUSE output will not go HIGH until the current command
execution is completed.

~wn

o

OPERAND ENTRY

The AmS511A commands operale on the operands located at
the TOS and NOS and results are returned to the stack at NOS
and then popped to TOS, The operands required for the
Am3511A are one of three formats — single precision fixed-point
(2 byles), double precision fixed-point (4 bytes) or floating-point
{4 bytes). The result of an operation has the same formal as the
operands except for float to fix or fix to float commands.

Operands are always entered into the stack least significant byle
first and most significant byte last. The following procedure must
be followed to enter cperands onto the stack:

1. The lower significant operand byte is established on the
DB0-DB7 lines. i

A LOW is established on the C/D input to specify that data is
to be entered into the stack.

The TS input is made LOW.

After appropriate set up time (see timing diagrams), the WR
input is made LOW. The PAUSE output will become LOW.
Sometime after this event, the PAUSE will retun HIGH to
indicate that the write op 1 has been

Anytime after the PAUSE output goes HIGH the WH anu!
can be made HIGH, The DB0-DB7, C/D and TS inputs can
change after appropriate hold time requirements are satisfied
(see timing diagrams).

The above procedure must be repeated until all bytes of the
operand are pushed into the stack. It should be noted that for
single precision fixed-point operands 2 bytes should be pushed
and 4 bytes must be pushed for double precision fixed-point or
floating-point. Not pushing all the bytes of a quantity will result in
byte pointer misalignment.

The Am@511A stack can accommodate B single precision
fixed-point quantities or 4 double precision fixed-point or float-
ing-paint quantities. Pushing more quantities than the capacity
of the stack will result in loss of data which is usual with any
LIFO stack.

~

aw

!-"

o

DATA REMOVAL

Result from an operation will be available at the TOS. Results
can be transferred from the stack to the data bus by reading the
stack. When the stack is popped for results, the most significant
byte is available first and the least significant byte last. A resultis
always of the same precision as the operands that produced it

. A LOW is established on the C/D input.

The CS input is made LOW.

After appropriate set up time (see timing diagrams), the RD
input is made LOW. The PAUSE will become LOW,
Sometime after this, PAUSE will return HIGH indicating that
the data is available on the DB0-DB7 lines. This data will
remain on the DBO-DBY7 lines as long as the AD input re-
mains LOW.

. Anytime after PAUSE goes HIGH, the FD input can retun
HIGH to complete ‘transaction.

The ©S and C/D inputs can change atter appropriate hold
time requirements are satisfied (see timing diagram).
Repeat this procedure until all bytes appropriate for the pre-
cision of the result are popped out.

Reading of the stack does not alter its data; it only adjusts the

byte pointer. If more data is popped than the capacity of the
stack, the internal byte pointer will wrap around and older data

.W!“‘
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will be read again, consistent with the LIFO stack.

STATUS READ

The Am@511A stalus register can be read without any regard to

whether a command is in progress of not. The only implication
that has 1o be considered is the effect this might have on the
END output discussed in the signal descriptions.

The following procedure must be followed to accomplish status
register reading.

. Establish HIGH on the C/D input.

2. Establish LOW on the CS input. L.

3. After appropriale set up time (see timing diagram) RD input is
made LOW. The PAUSE will become LOW.

Sometime after the HIGH to LOW transition of RD input, the
PAUSE will become HIGH indicating that status register
contents are available on the DB0-DB7 lines. The status data
will remain on DBO-DB7 as long as RD input is LOW.

The RD input can be returned HIGH anytime after PAUSE
goes HIGH.

The C/D input and TS input can change afler satisfying ap-
propriate hold time requirements (see timing diagram).

b
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DATA FORMATS

The Ama511A Arithmetic Processing Unit handles operands in
both fixed-point and floating-point formats. Fixed-point operands
may be represented in either single (16-bit operands) or double
precision (32-bit operands), and are always represented as
binary, two's complement values.

16-BIT FIXED-POINT FORMAT

VALUE

15 [}
s8]
0189284

32-BIT FIXED-POINT FORMAT

H VALUE: |
ETEEEEEEENR RN A NS RN TEN RN

3 o
s} 018028-5
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The sign (positive or negative) of the operand is located in the
most significant bit (MSB). Positive values are represented by
a sign bit of zero (S = 0). Negative values are represented by
the two's it of the ponding positive value with
a sign bit equal 1o 1 (S = 1). The range of values that may be
accomodated by each of these lormats is —32,767 to
+32,767 lor single precision and -2,147,483,647 to
+2,147,483,647 for double precision.

Floating point binary values are represented in a format that
permits arithmetic to be performed in a fashion analogous to
operations with decimal values expressed in scientific nota-
tion.

(5.83 x 10%)(8.16 x 10') = (4.75728 x 10%)

In the decimal system, data may be expressed as values be-
tween 0 and 10 times 10 raised to a power that effectively
shifts the implied decimal point right or left the number of
places necessary 1o express the result in conventional form
(e.q., 47,572.8). The value-portion of the data is called the
mantissa. The exponent may be either negative or positive.

The concept of floating point notation has both a gain and a
loss associated with it. The gain is the ability to represent the
significant digits of data with values spanning a large dynamic
range limited only by the capacity of the exponent field. For
example, in decimal notation if the exponent field is two digits
wide, and the mantissa is five digits, a range of values (posi-
tive or negative) from 1.0000 x 10~ to 9.9999 x 107 can
be accommodated. The loss is that only the significant digits
of the value can be represented. Thus there is no distinction
in this representalion between the values 123451 and
123452, for example, since each would be expressed
as: 1.2345 x 10% The sixth digit has been discarded. In most
applications where the dynamic range of values to be rep-
resented is large, the loss of significance, and hence accuracy
of resulls, is a minor consideration. For greater precision a
fixed point format could be chosen, although with a loss of po-
tential dynamic range.

The Am9511 is a binary arithmetic processor and requires
that floating point data be represented by a fractional man-
tissa value between .5 and 1 multiplied by 2 raised to an ap-
propriate power. This is expressed as follows:

value = mantissa x 28xPanent

7 6 5 4 3 2 1 0

I BUSY | SIGN

ZERO |ERHDHCODEI CARRY

I— CARRY:

For example, the value 100.5 expressed in this form is
0.11001001 x 2”. The decimal equivalent of this value may be
computed by summing the components (powers of two) of the
mantissa and then multiplying by the exponent as shown be-
low:

value = (271 + 272 4 279 4+ 278 x 27
0.5 + 0.25 + 0.03125 + 0.00290625) x 128
78515625 x 128
= 100.5

FLOATING POINT FORMAT

The format for floating-point values in the Am9511A is given
below. The mantissa is expressed as a 24-bit (fracticnal) value;
the expanent is expressed as an unbiased two's complement
7-bit value having a range of —64 to +63. The most significant
bit is the sign of the mantissa (0 = positive, 1 = negative), for a
total of 32 bits. The binary point is assumed to be to the left of
the most significant mantissa bit (bit 23). All floating-point data
values must be normalized. Bit 23 must be equal to 1. except lor
the value zero, which is represented by all zeros.

l:“_Ll? EXPONENT —= MANTISSA {
ESIJJ]HJ\H]I|||IIIJIH\||I|lll
HE] EZE] ¢

0189286

The range of values that can be represented in this formal is
=(27 x 107%° 10 9.2 x 10'®) and zero.

STATUS REGISTER

The Am9511A contains an eight bit status register with the fol-
lowing bit assignments.

If the BUSY bit in the status register is a one, the other stalus
bits are not defined: if zero, indicating not busy, the operation is
complete and the other status bits are defined as given below.

Previous operation resulted in carry or borrow from

most significant bit. (1 = Carry/Borrow, 0 = No

Carry/No Borrow)

This field contains an indication of the validity of the

resul of the last operation. The error codes are:

0000 — Noerror

1000 — Divide by zero

0100 — Square root or log of negative number

1100 — Argument of inverse sine, cosine, or e too
large

XX10 ~ Underflow

XX01 — Overflow

Indicates that the value on the top of stack is zero

(1 = Value is zero).

Indicates that the value on the top of stack is negalive

{1 = Negative).

Indicales that Am9511A is currently executing a com-

mand (1 = Busy).

ERROR
CODE:

ZERO:
SIGN:

BUSY:
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Table 1.
i Command | Hex Code | Hex Code Execution Summary
!“_ i (sr=1) (sr = 0) Cycles Description
[ 16-BIT FIXED-POINT OPERATIONS
| SADD EC B6C 16-18 Add TOS to NOS. Result to NOS. Pop Stack.
SsuB ED 6D 30-32 Subtract TOS from NOS. Result 1o NOS. Pop Stack.
SMUL EE 6E 84-94 Multiply NOS by TOS. Lower resull to NOS. Pop Stack.
SMuU F6 76 B0-08 Multiply NOS by TOS. Upper resull to NOS. Pop Stack.
sDIv EF 6F 84-94 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FIXED-POINT OPERATIONS
DADD AC 2c 2022 Add TOS to NOS. Result o NOS. Pop Stack,
psus AD 20 38-40 Subtract TOS from NOS. Result to NOS. Pop Stack.
bMUL AE 2E 194-210 Multiply NOS by TOS. Lower result 1o NOS. Pop Stack.
DMUU B 36 182218 Multiply NOS by TOS. Upper result 1o NOS. Pop Stack.
ooV AF 2F 196-210 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FLOATING-POINT PRIMARY OPERATIONS
FADD 920 10 54-368 Add TOS to NOS. Result to NOS. Pop Stack.
Fsus a1 " 70-370 Subtract TOS from NOS. Result 1o NOS. Pop Stack
FMUL 82 12 146-168 Multiply NOS by TOS. Result to NOS. Pop Stack.
FDIV 83 13 154-184 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FLOATING-POINT DERIVED OPERATIONS
SQRT 81 o1 782-870 Square Root of TOS. Result to TOS.
SIN 82 0z 3796-4808 Sine of TOS. Result to TOS.
cos 83 03 3840-4878 Cosine of TOS. Result to TOS.
TAN B84 04 4894-5886 Tangent of TOS. Result to TOS.
ASIN 85 05 6230-7938 Inverse Sine of TOS. Result to TOS.
ACOS 86 06 6304-8284 Inverse Cosine of TOS. Result to TOS.
ATAN 87 o7 4992-6536 Inverse Tangent of TOS. Resull 1o TOS.
LOG 88 o8 4474-7132 Common Logarithm of TOS. Result to TOS
LN BS 09 4298-6956 Natural Logarithm of TOS. Result to TOS.
EXP BA 0A 3794-4878 @ raised to power in TOS. Result to TOS.
PWR 8B 0B 8290-12032 NOS raised lo power in TOS. Result to NOS. Pop Stack.
DATA AND STACK MANIPULATION OPERATIONS
NOP 80 00 4 Mo Operation. Clear or set SVREQ.
:ig :; :; :‘;:;: } Convert TOS from floating point format 1o fixed point formal.
:t:z g :g :i:: } Convert TOS from fixed point format to floating point format.
g::i :: ;: zz::: } Change sign of fixed point operand on TOS.
CHSF 95 15 16-20 Change sign of floating point operand on TOS,
PTOS Fr 7 16
PTOD B7 37 20 } Push stack. Duplicate NOS in TOS.
PTOF 87 17 20
POPS F8 78 10
POPD BB 38 12 } Pop stack. Old NOS becomes new TOS. Oid TOS rotates to bottom.
POPF 98 18 12
XCHS F9 79 18
XCHD B9 39 26 Exchange TOS and NOS.
XCHF a9 19 26
PUPI 9A 1A 16 Push floating point constant 7 onto TOS. Pravious TOS becomes NOS.
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COMMAND DESCRIPTIONS

This section contains detailed descriptions of the APU com-
mands. They are arranged in alphabetical order by command
mnemanic. In the descriptions, TOS means Top Of Stack and
NOS means Next On Stack.

All derived functions except Square Root use Chebyshev
polynomial approximating algorithms. This approach is used
to help minimize the internal microprogram, to minimize the
maximum error values and to provide a relatively even dis-
tribution of errors over the data range. The basic arithmetic
operations are used by the derived functions to compute the
various Chebyshev terms. The basic operations may produce
error codes in the status register as a result.

Execution limes are listed in lerms of clock cycles and may
be converted into time values by multiplying by the clock
period used. For example, an execution time of 44 clock cy-

cles when running at a 3MHz rate translates to 14 micro-
seconds (44 x 32us = 14us). Variations in execution cycles
reflect the data dependency of the algerithms.

In some operations exponent overflow or underflow may be
possible. When this occurs, the exponent returned in the re-
sult will be 128 greater or smaller than its true value.

Many of the functions use portions of the data stack as
scraich storage during development of the results. Thus pre-
vious values in those stack locations will be lost. Scratch loca-
tions destroyed are listed in the command descriptions and
shown with the crossed-out locations in the Stack Contents
After diagram.

Table 1 is a summary of all the Am9511A commands. It shows
the hex codes for each command, the mnemonic abbreviation, a
brief description and the execution time in clock cycles. The
commands are grouped by functional classes.

The command mnemonics in alphabetical order are shown
below in Table 2.

Table 2.
Ci d M ics in Alp | Order.
ACOS ARCCOSINE LOG COMMON LOGARITHM
ASIN ARCSINE LN NATURAL LOGARITHM
ATAN ARCTANGENT NOP NO OPERATION
CHSD CHANGE SIGN DOUBLE POPD POP STACK DOUBLE
CHSF CHANGE SIGN FLOATING POPF POP STACK FLOATING
CHSS CHANGE SIGN SINGLE POPS POP STACK SINGLE
cos COSINE PTOD PUSH STACK DOUBLE
DADD DOUBLE ADD PTOF PUSH STACK FLOATING
DDV DOUBLE DIVIDE PTOS PUSH STACK SINGLE
DMUL DOUBLE MULTIPLY LOWER PUPI PUSH
DMUU DOUBLE MULTIPLY UPPER PWR POWER (X")
bsuB DOUBLE SUBTRACT SADD SINGLE ADD
EXP EXPONENTIATION (e*) SDIvV SINGLE DIVIDE
FADD FLOATING ADD SIN SINE
FDIV FLOATING DIVIDE SMUL SINGLE MULTIPLY LOWER
FIXD FiX DOUBLE SMuuU SINGLE MULTIPLY UPPER
FIXS FIX SINGLE SQRT SQUARE ROOT
FLTD FLOAT DOUBLE SsuB SINGLE SUBTRACT
FLTS FLOAT SINGLE TAN TANGENT
FMUL FLOATING MULTIPLY XCHD EXCHANGE OPERANDS DOUBLE
FSuB FLOATING SUBTRACT XCHF EXCHANGE OPERANDS FLOATING
XCHS EXCHANGE OPERANDS SINGLE




ACOS

32-BIT FLOATING-POINT INVERSE COSINE

7 & 5 4 3 2 1
T = 1
Binary Coding: [ s [ 0 [0 |0 [0 [ 1 1 } |
Hex Coding: 86 with st = 1
06 with st = 0
Execution Time: 6304 to 8284 clock cycles
Description:

The 32-bit floaling-point operand A at the TOS is replaced by the
32-bit lloating-point inverse cosine of A, The resull Ris a value in
radians 0 and 7. Initial ¢ A, B, Cand Dare lost.
ACOS will accept all input data values within the range of - 1.0 1o
+1.0. Values outside this range will return an error code of 1100
in the status register.

Accuracy: ACOS exhibits a maximum relative error of 2.0 x

10”7 over the valid input data range.
Status AHected: Sign, Zero, Error Field

STACK CONTENTS

Am9511A

ATAN

32-BIT FLOATING-POINT
INVERSE TANGENT

Binary Cudmg [
Hex Coding: B? with sr -

07 with sr = 0
Execution Time: 4992 to 6536 clock cycles
Description:

Tt.e 32-bit floating-point operand A at the TOS is replaced by the

32-bit floating-point inverse tangent of A. The result Ris avalue in

radians between — /2 and + /2. Initial operands A, C and D are

lost. Operand B is unchanged,

ATAN will accept all input data values that can be represented in

the floating point formal.

Accuracy: ATAN exhibils a maximum relative error of 3.0 x
1077 over the input data range.

Status Affected: Sign, Zero

STACK CONTENTS

ASIN

32-BIT FLOATING-POINT INVERSE SINE

T 6
Binary Coding: | sr 0

5 4 3 2 1 0

ENENENEN

Hex Coding:  B5 with sr = 1

05 with sr =
Execution Time: 6230 to 7938 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by the

32-bit floaling-point inverse sine of A. The result R is a value in

radians between —w/2 and +w/2. Initial operands A, B, C and D

are lost.

ASIN will accept all input data values within the range of —1.0to

+1.0. Values outside this range will return an error code of 1100

in the status register.

Accuracy: ASIN exhibits a maximum relative error of 4.0 x
107 over the valid input data range.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE BEFORE AFTER
\ i A e TOS—=] R
T B B ) = B
= ; — =
3 —l | 32 — s

CHSD

32-BIT FIXED-POINT SIGN CHANGE

7 6 5 4 3 2 1 0
1

BinaryCudlﬂg:|sr‘ﬂ‘ |1 ‘O‘I }ﬂ_ll|
Hex Coding: B4 with sr = 1
34 withsr = 0
Execution Time: 26 1o 28 clock cycles
Description:

The 32-bit fixed-point two's complement integer operand A at
the TOS is subtracted from zero. The result R replaces A at
the TOS. Other entries in the stack are not disturbed.
Overflow status will be set and the TOS will be returned un-
changed when A is input as the most negative value possible
in the format since no positive equivalent exists.

Status Affected: Sign, Zero, Error Field (overflow)

STACK CONTENTS

BEFORE

A [~— TOS —] R
r I

c

D

BEFORE AFTER
[ A ~—T08—~ R N
| 8 B
‘ c ¢
\ D D N
I az f——a32—+

|a— 32 — =
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CHSF

32-BIT FLOATING-POINT SIGN CHANGE

7 ] 5 4 3 2 1 0
Binarycadlng:|sr‘c[0| IID[!ID[ 1‘
Hex Coding: 95 with sr = 1

15 with sr = 0
Execution Time: 16 to 20 clock cycles
Description:

The sign of the mantissa of the 32-bit floating-point operand A at
the TOS is inverted. The result R replaces A at the TOS. Other
stack entries are unchanged.
If A is input as zero (mantissa MSB = 0), no change is made.
Status Affected: Sign, Zero

COS

32-BIT FLOATING-POINT COSINE

7 6 5 4 3 2 1 0
Binary Coding: [sr [0 [0 [0 [o o [ 1]
Hex Coding: 83 with sr = 1
03 with sr = 0
Execution Time: 3840 to 4878 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by

R, the 32-bit floating-point cosine of A. A is assumed 1o be in

radians. Operands A, C and D are lost. B is unchanged.

The COS function can accepl any input data value that can

be represented in the data format. All input values are range

reduced to fall within an interval of —#/2 to +x/2 radians.

Accuracy: COS exhibits a maximum relative error of 5.0 ¥
107 for all input data values in the range of 27
to +2n radians.

Status Affected: Sign. Zero

STACK CONTENTS
BEFORE
A =—TOS —= R

STACK CONTENTS
BEFORE AFTER
[ A - TOS—=| R
B B
c c
i D D
fe——a0—+ [ 32

CHSS

16-BIT FIXED-POINT SIGN CHANGE

7 B & 48 & §f @
Binary Coding: [ sr [ 1 [1 [1[o[1 o]0

Hex Coding: F4 with sr = 1

74 with st = 0
Execution Time: 22 to 24 clock cycles
Description:

16-bit fixed-point two's complement integer operand A atthe TOS
is subtracted from zero. The result R replaces A at the TOS. All
other operands are unchanged.

Overflow status will be set and the TOS will be retumed un-
changed when A is input as the most negative value possible in
the formal since no positive equivalent exists.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

B

|l———a32—|

DADD

32-BIT FIXED-POINT ADD

7 6 5 4 3 2 1 0
Binary Coding: [sr [0 | 1] 0|1 1] 0] 0]
Hex Coding: AC with sr = 1
2C with sr = 0
Execution Time: 20 to 22 clock cycles
Description:

The 32-bit fixed-point two's complement integer operand A at the
TOS is added to the 32-bit fixed-point two's complement integer
operand B at the NOS. The result R replaces operand B and the
Stack is moved up so thal R occupies the TOS. Operand Bis lost.
Operands A, C and D are unchanged. If the addition generates a
carry it is reported in the stalus register.

Ifthe result is too large to be represented by the data format, the

BEFORE AFTER least significant 32 bits of the resul are returned and overliow
A TOS R status is reported.
B B Status Affected: Sign, Zero, Carry, Error Field
c c STACK CONTENTS
IR D BEFORE AFTER
E B A —-—T0S —=| R
3 F B c
G e c D
H H D A |
b 16— 16 —=! 32 32—+
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DDIV

32-BIT FIXED-POINT DIVIDE
7 & 5 4 3 2 1 0
ahary::odlng:|sr\o|1|uj1]1]1|1|
Hex Coding:  AF with sr = 1
2F with st = 0

Execution Time: 196 to 210 clock cycles when A = 0
18 clock cycles when A = 0.

Description:

The 32-bit fixed-paint two's complement integer operand B at
NOS is divided by the 32-bit fixed-point two's complement in-
ieger operand A at the TOS. The 32-bit integer quotient R re-
paces B and the stack is moved up so that R occupies the
T0S. No remainder is generated. Operands A and B are lost.
Operands C and D are unchanged,

IfA is zero, R is set equal to B and the divide-by-zero error
status will be reported. If either A or B is the most negative
value possible in the format, R will be meaningless and the
overflow error status will be reported.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

AmS511A

DMUU

32-BIT FIXED-POINT MULTIPLY, UPPER

T TaleliLiled

Binary Coding: I;r | 0 I 1 ‘ 1 [ 0

Hex Coding: B6 with sr = 1

36 with sr = 0
Execution Time: 182 to 218 clock cycles
Description:

The 32-bit fixed-point two's complement integer operand A at
the TOS is multiplied by the 32-bit fixed-point two's comple-
ment integer operand B al the NOS. The 32-bit most signifi-
cant half of the product R replaces B and the stack is moved
up so that R occupies the TOS. The least significant half of
the product is lost. Operands A and B are lost. Operands C
and D are unchanged.

If A or B was the most negative value possible in the format,
overflow status is set and R is meaningless.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE AFTER
[ A |—T105—+ R
8 c
\_ C
| o |
fe—32—e 32

DMUL

32-BIT FIXED-POINT MULTIPLY, LOWER
T 6 5 4 3 2 1 0

BinaryCodlng:|-sr[ 0 1 1 ! 0 ‘ 1 | 1 | A ] 1] |
Hex Coding:  AE with sr = 1
2E with sr = 0

Execution Time: 194 lo 210 clock cycles

Description:
The 32-bit fixed-point two's complement integer operand A at the
TOS is multiplied by the 32-bit fixed-point two's complement in-
teger operand B at the NOS. The 32-bit least significant half of the
product R replaces B and the stack Is moved up so that R oc-
cupies the TOS. The most significant half of the product is lost.
Operands A and B are lost. Operands C and D are unchanged.
The overflow status bit is set il the discarded upper half was
non-zero. If either A or B is the most negative value thal can
be represented in the format, that value is returned as R and
the overflow status is set.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE AFTER
A |=—TOS —=| R
B B c
c i D
= il
[ 32 |——3z—

DSUB

32-BIT FIXED-POINT SUBTRACT

F1 8 B WS e T W
Binary Coding: [sr [ 0 [ 1 [0 [1 [ 1 [o] 1]

Hex Coding:  AD with st = 1

2D with st = 0
Execution Time: 38 to 40 clock cycles
Description:

The 32-bit fixed-point two's complement operand A at the
TOS is subtracted from the 32-bit fixed-point two's comple-
ment operand B at the NOS. The difference R replaces
operand B and the stack is moved up so that R occupies the
TOS. Operand B is lost. Operands A, C and D are un-
changed.

If the subtraction generates a borrow it is reported in the carry
status bit. If A is the most negative value that can be rep-
resented in the format the overflow status is set. If the result
cannol be represented in the data format range, the overflow
bit is set and the 32 least significant bits of the result are re-
tumed as R.

Status Affected: Sign, Zero, Carry, Overflow

STACK CONTENTS

BEFORE AFTER BEFORE AFTER

A |-—T05 —= A A |[—T05—= R

B c B c

G D c D

D e D A
[e——32—] } 32 | 32 | —a—=l
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EXP

32-BIT FLOATING-POINT e*

7 6 5 4 3 2 1 0
Binary Coding: [ sr [0 [a [0 [1[o [ 1] o]
Hex Coding:  BA with sr = 1

DA with sr = 0

Execution Time: 3794 to 4878 clock cycles for |Al = 1.0 x ag
34 clock cycles for 1Al > 1.0 x 25

Description:

The base of natural logarithms, e, is raised to an exponent value

specified by the 32-bit fioating-point operand A at the TOS. The

result R of e replaces A. Operands A, C and D are lost. Operand

B is unchanged.

EXP accepts all input data values within the range of —1.0x2**

to +1.0x 2%, Input values outside this range will return a code of

1100 in the error field of the status register.

Accuracy: EXP exhibits a maximum relative error of 5.0 x
107 over the valid input data range.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

FDIV

32-BIT FLOATING-POINT DIVIDE

£ 6 5 4 3 2 1 0
BInarnddIng:sr‘O]ul1 U‘O}\IN
Hex Coding: 93 with sr = 1

13 withsr = 0

Execution Time: 154 to 184 clock cycles for A # 0

22 clock cycles for A = 0
Description:
32-bit floating-point operand B at NOS is divided by 32-bit
floating-point operand A at the TOS. The result R replaces B and
the stack is moved up so that R occupies the TOS. Operands A
and B are lost. Operands C and D are unchanged.
If operand A is zero, R is set equal to B and the divide-by-zero
error is reported in the status register. Exponent overflow of
underflow is reported in the status register, in which case the
mantissa portion of the result is correct and the exponent portion
is of‘sel by 128.
Status Affected: Sign, Zero, Error Field

gEFoRe  STACK CONTENTS
A -—TOS —= [ |
B | ©
c D
D = =N
} 32 | -3z ——=f

BEFORE AFTER
A ~—TOS—= R
B B
¢
D
——gp——| a2

FADD

32-BIT FLOATING-POINT ADD

7 6 5 4 3 2 1 0
Binary Coding:[sr [0 [0 | 1 [0 ] o] o] o]
Hex Coding: 90 with st = 1
10 with st = 0

Execution Time: 54 to 368 clock cycles for A # 0

24 clock cycles for A = 0
Description:
32-bit floating-point operand A at the TOS is added to 32-bit
floating-point operand B at the NOS. The result R replaces B and
the stack is moved up se that R occupies the TOS. Operands A
and B are lost. Operands C and D are unchanged.
Exponent alignment before the addition and normalization of the
result accounts for the variation in execution lime. Exponent
overflow and underflow are reported in the status register, in
which case the mantissa is correct and the exponent is offset by
128.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS

FIXD

32-BIT FLOATING-POINT TO
32-BIT FIXED-POINT CONVERSION

7 B 8 & & 2 4 ..b
wJoJo[1 1] [a]e]

Binary Coding:
Hex Coding: 9E with sr = 1

1E withsr = 0
Execution Time: 90 to 336 clock cycles
Description:

32-bit floating-point operand A at the TOS is converted to a
32-bit fixed-point two's complement integer. The result R re-
places A. Operands A and D are lost. Operands B and C are
unchanged.

If the integer portion of A is larger than 31 bits when con-
verted, the overflow status will be set and A will not be
changed. Operand D, however, will still be lost.

Status Affected: Sign, Zero Overflow

STACK CONTENTS

BEFORE AFTER
A le—T08 —=| R |
B ¢ |
c D
D e |

|e——— 32—

BEFORE AFTER
A - TOS —= R
B B
c c
D
32 fe—— 32—l




FIXS

32-BIT FLOATING-POINT TO
16-BIT FIXED-POINT CONVERSION

7 & -] 4 3 2 k. 1]
Binary Coding: [sr [0 | 0 [ 1 [ 11 [1]1]
Hex Coding:  9F with sr = 1
1F with st = 0
Execution Time: 90 to 214 clock cycles
Description:

32-bit floating-point operand A at the TOS is converted to a
16-bit fixed-point two’s complement integer. The result R re-
places the lower half of A and the stack is moved up by two
bytes so that R occupies the TOS. Operands A and D are
lost. Operands B and C are unchanged, but appear as upper
(u) and lower (I} halves on the 16-bil wide stack if they are
32-bit operands.

If the integer portion of A is larger than 15 bits when con-
verled, the overflow status will be set and A will not be
changed. Operand D, however, will still be lost.

Status Affected: Sign, Zero, Overflow

gEFoRe  STACK CONTENTS S
A |e———TOS——=| R
B Bu
c Bl
D Cu
32—l cl
=
e 16 2]

FLTD

32-BIT FIXED-POINT TO
32-BIT FLOATING-POINT CONVERSION

7 6 5 4 3 2 1 0

AmS511A

FLTS

16-BIT FIXED-POINT TO
32-BIT FLOATING-POINT CONVERSION

2 6 -1 4 3 2 1 0
Blnanr(:odlngz|sr|olol1 |1 Wl ED l‘.‘f
Hex Coding: 9D with sr = 1

1D with sr = 0
Execution Time: 62 to 156 clock cycles
Description:

16-bit fixed-point two's complement integer A at the TOS is
converted to a 32-bit floating-point number. The lower hall of the
result R (RI) replaces A, the upper half (Ru) replaces H and the
stack js moved down so thal Ru occupies the TOS. Operands A,
F, G and H are lost. Operands B, C. D and E are unchanged.
Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A je———TOS ——= Ru
B RI
c B
D c
E D
F E
G
H

16— |15 =l

FMUL

32-BIT FLOATING-POINT
MULTIPLY

7 6 5 4 3 2 1 o

Binary Coding: | sr 01011‘0[0‘1I0‘

Binary Coding: [sr | 0 |0 | 1 [ 1 [1[o] 0]
Hex Coding:  9C with sr = 1
1C with sr = 0
Execution Time: 56 to 342 clock cycles
Description:

32-bit fixed-pointtwo’s complement integer operand A atthe TOS
is converted to a 32-bit floating-point number. The result R re-
places A atthe TOS. Operands A and D are lost. Operands Band
C are unchanged.
Status Affected: Sign, Zero

STACK CONTENTS

Hex Coding: 92 with sr = 1
12 with sr = 0
Time: 146 to 168 clock cycles
Description:

32-bit floating-point operand A at the TOS is multiplied by the
32-bil floating-point operand B at the NOS. The normalized result
R replaces B and the stack is moved up so that R occupies the
TOS. Operands A and B are lost. Operands C and D are un-
changed.
Exponent overflow or underflow is reported in the status register,
in which case the mantissa portion of the resultis correct and the
exponent portion is offset by 128.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A —TOS—= R
B B
c c
D ————
[e——32—— fe——a2—d
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BEFORE AFTER
A ~——T0§ —= R |
8
c
) -
|e——32— 32—
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FSUB

32-BIT FLOATING-POINT SUBTRACTION

7 8 5 4 3 2 1 0
Binary Coding: s [ 0 [0 [ 1 [o [0 [o] 1]
Hex Coding: 91 with 57 = 1
11 with 51 = 0
Execution Time: 70 1o 370 clock cycles for A # 0
26 clock cycles for A = 0

Description:
32-bit floating-peint operand A at the TOS is subtracted from
32-bit floating-point operand B at the NOS. The normalized
difference R replaces B and the stack is moved up so that R
occupies the TOS, Operands A and B are lost. Operands C
and D are unchanged.

Exponent alignment before the subtraction and normalization
of the result account for the variation in execution time.
Exponent overflow or underfiow is reported in the status regis-
ter in which case the manlissa portion of the result is correct
and the exponent portion is offset by 128.

Status Affected: Sign, Zero, Error Field (overflow)

STACK CONTENTS

LN

32-BIT FLOATING-POINT
NATURAL LOGARITHM

7 6 5 4 3 2 1 0

Binary Coding: [ st [ 0 | 0 | 0 |1 |0 |0 1]
Hex Coding: 89 with sr = 1
09 with sr = 0

Execution Time: 4298 to 6956 clock cycles for A > 0
20 clock cycles for A= 0
Description:
The 32-bit floating-point operand A at the TOS is replaced by
R, the 32-bit floating-point natural logarithm (base e) of A
Operands A, C and D are lost. Operand B is unchanged.
The LN function accepts all positive input data values that can
be represented by the data format. If LN of a non-positive
number is attempted an error status of 0100 is returned.
Accuracy: LN exhibits a maximum absolute error of 2 x 107
for the input range from e ' 1o e, and a maximum
relative error of 2.0 x 1077 for positive values less
than e ' or greater than e.
Status Affected: Sign, Zero, Error Field

BEFORE  STACK CONTENTS

A
B
c

AFTER

-—TOS —=

BEFORE AFTER
A [-—TOS — R
B c
c
D
-3 b 32

LOG

32-BIT FLOATING-POINT
COMMON LOGARITHM

7 6 5 4 3 2 1 0
Binarnddlng:]sr‘D|0]D|1I0]G|ﬂ]
Hex Coding: 88 with st = 1

08 with sr = 0

Execution Time: 4474 to 7132 clock cycles for A > 0

20 clock cycles for A = 0

Description:

The 32-bit floating-point operand A at the TOS is replaced by R,

the 32-bit floating-point common logarithm (base 10) of A.

Operands A, C and D are lost. Operand B is unchanged.

The LOG function accepts any positive input data value that can

be represented by the data format. If LOG of a non-positive value

is attempted an error status of 0100 is returned.

Accuracy: LOG exhibits a maximum absolute errorof 2.0x 107
for the input range from 0.1 to 10, and a maximum
relative error of 2.0 x 1077 for positive values less
than 0.1 or greater than 10

Status Affected: Sign, Zero, Error Field

BEFORE STACK CONTENTS AFTER
A [=—TOS —= R
B B
c
D
32

70

D

|——32— |

NOP

OPERATION
7 6 5 4 3 2 1 0
Binary Coding: [ sr [0 [0 [o [0 o oo

Hex Coding: 80 with sr = 1

00 with sr = 0
Execution Time: 4 clock cycles
Description:

The NOP command performs no internal data manipulations. It
may be used to set or clear the service request interface line
without changing the contents of the stack.

Status Affected: The stalus byte is cleared to all zeroes.




POPD

32-BIT
STACK POP
7 6 5 4 3 2 1 0

sln-rycodlng:[sr]oM|1|1}oin\o|
Hex Coding: B8 with sr = 1

38 with sr = 0
Execution Time: 12 clock cycles
Description:

The 32-bit stack is moved up so that the old NOS becomes the
new TOS. The previous TOS rotates to the bottom of the stack. All
operand values are unchanged. POPD and POPF execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS
AFTER

BEFORE

POPF

32-BIT
STACK POP
7 ] 8 4 3 2 1 0

Binary Coding: [ sr | 0 [0 [1 [1 [0 o] o0
Hex Coding: 98 with sr = 1

18 with sr = 0
Execution Time: 12 clock cycles
Description:

The 32-bit stack is moved up so that the old NOS becomes the
new TOS. The old TOS rotates to the bottom of the stack. All
operand values are unchanged. POPF and POPD execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

Am9511A

POPS

16-BIT
STACK POP
7 6 5 4 3 2 1 0

Binary Coding: 5r[1|1|1|1{0i0|0|
Hex Coding:  FB8 with sr = 1

78 withsr = 0
Execution Time: 10 clock cycles
Description:

The 16-bit stack is moved up so that the old NOS becomes the
new TOS. The previous TOS rotates to the bottom of the stack. All
operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS
BEFORE AFTER

A Tos B

B c

c o

D e |
I & | F

F G

G H

H A |
b 15— e 16—

PTOD

PUSH 32-BIT
TOS ONTO STACK
7 6 ) 4 2 2 1 0

Blnarycudlngzasr[a‘lE'IID‘1|1 1
Hex Coding:  B7 with sr = 1

37 with sr = 0
Execution Time: 20 clock cycles
Description:

The 32-bit stack is moved down and the previous TOS is
copied into the new TOS location. Operand D is lost. All other
operand values are unchanged. PTOD and PTOF execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER BEFORE AFTER
A |-——TOS—| 8 | A |~—T0§ — A
B c B A
c D c B8
B A D c |
| 32 | 32 | 32——=| —a32——

7
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PTOF

PUSH 32-BIT
TOS ONTO STACK
i 6 5 4 3 2 1 0

Binary Coding: 5"“'°‘*J°J1 I1I|‘
Hex Coding: 97 with sr = 1

17 with st = 0
Execution Time: 20 clock cycles
Deseription:

The 32-bit stack is moved down and the previous TOS is copied
into the new TOS location. Operand D is lost. All other operand
values are unchanged. PTOF and PTOD execute the same op-
eration.

Status Affected: Sign, Zero

STACK CONTENTS

PUPI

PUSH 32-BIT
FLOATING-POINT 77

7 6 5 4 3

Binary Coding: | st | 0 [0 [ 1 [ 1] 1o

Hex Coding:  9A with sr = 1

1A with sr = 0
Execution Time: 16 clock cycles
Description:
The 32-bit stack is moved down so that the previous TOS op-
cupies the new NOS location. 32-bit floating-point constant « is
entered into the new TOS location. Operand D is lost. Operands
A, B and C are unchanged.
Status Affected: Sign, Zero

o|n

STACK CONTENTS

BEFORE AFTER BEFORE AFTER
A -——TOS —= A A |——T05 —=| "
B A B A
c B | c B
D c | o | B -2
Je—— 32— 32 | | 32 | jo———32 ——=|

PTOS

PUSH 16-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0

Binary Coding: [ sr [ 1 [ 1 [ 1 Ja [ 1 [ 1] 1]
Hex Coding: F7 withsr = 1
77 with sr = 0
Execution Time: 16 clock cycles
Description:

The 16-bit stack is moved down and the previous TOS is copied
into the new TOS location. Operand H is lost and all other
operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS
BEFORE AFTER
A Tos A
B A
C B
D c
E o
F E
G F
H G
[~— 16— 16—
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PWR

32-BIT "
FLOATING-POINT X
7 6 5 4 8 2 1 0

Binary Coding: [ [ 0 | 0 [0 [ 1 [ o[ 1] 1]
Hex Coding: 8B with sr = 1

0B with sr = 0
Execution Time: 8290 to 12032 clock cycles
Description:

32-bit floating-point operand B at the NOS is raised to the power

specified by the 32-bit floating-point operand A at the TOS. The

result R of B* replaces B and the stack is moved up so that R

accupies the TOS, Operands A, B, and D are lost. Operand C is

unchanged.

The PWR function accepts all input data values thal can be

represented in the data format for operand A and all positive

values for operand B. If operand B is non-posilive an error status
0of 0100 will be returned. The EXP and LN functions are used to

implement PWR using the relationship B% = EXP [A(LN B)].

Thus if the term | A(LN B)] is outside the range of ~1.0x2*% 1o

+1.0x 2% %an error status of 1100 will be retumed. Underflow and

overflow conditions can occur.

Accuracy: The error performance for PWR is a function of
the LN and EXP performance as expressed by
lRelative Error)pwel|=[(Relative Error)gxp+ |A(Absolute
Eror) n|
The maximum relative error for PWR occurs when
A is at its maximum value while [A(LN B)] is near
1.0 x 2% and the EXP error is also at its maxi-
mum. For most practical applications the relative
error for PWR will be less than 7.0 x 107

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE
| A

~——TOS—=

73

Am9511A

SADD

16-BIT
FIXED-POINT ADD
7 (] 5 4 3 2 1 0

Binary Coding: [sr | 1 | 1 [0 [+ [ 1 [o[ o]
Hex Coding: EC with st = 1

6C with sr = 0
Execution Time: 16 to 18 clock cycles
Description:
16-bit fixed-point two's complement integer operand A at the

TOS is added to 16-bil fixed-point two's complement integer
operand B at the NOS. The result R replaces B and the stack
is moved up so that R occupies the TOS. Operand B is lost
All other operands are unchanged.

If the addition generates a carry bit it is reported in the status
register. If an overflow occurs it is reported in the status regis-
ter and the 16 least significant bits of the result are returned.
Status Affected: Sign, Zero, Carry, Error Field

STACK CONTENTS

BEFORE
A TOS

AFTER

b s ]

I(@TMmMOO
T OMmOo|O

!
}
!
1
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SDIV

16-BIT
FIXED-POINT DIVIDE

7 6 5 4 3 2

Binary(:oding:‘_sr 1 1 0 1 | 1 I

Hex Coding:  EF with sr = 1
6F with sr = 0
Execution Time: 84 to 94 clock cycles for A # 0
14 clock cycles for A = 0

]

Description:

16-bit fixed-point two's complement integer operand B at the
NOS is divided by 16-bit fixed-point two's complement integer
operand A at the TOS. The 16-bit integer quotient R replaces B
and the stack is moved up so that R occupies the TOS. No
remainder is generated. Operands A and B are lost. All other
operands are unchanged.

If A is zero, R will be set equal to B and the divide-by-zero error
status will be reported.

Status Atected: Sign, Zero, Error Field

STACK CONTENTS

SIN |

32-BIT
FLOATING-POINT SINE

7 6 5 4 3 2 1 0

Binary Coding: | st ofoJoJofo]1]0]
Hex Coding: 82 with sr = 1
02 with st = 0

Execution Time: 3796 to 4808 clock cycles for |Al > 27"
radians
30 clock cycles for Al = 2 ' radians
Description:
The 32-bit floating-point operand A at the TOS is replaced by
R, the 32-bit floating-point sine of A. A is assumed to be in
radians. Operands A, C and D are lost. Operand B is un-
changed.
The SIN function will accept any input data value that can be
represented by the data format. All input values are range re-
duced to fall within the interval —=/2 to +n/2 radians,
Accuracy: SIN exhibits a maximum relative error of 5.0 x

BEFORE AFTER
A TOS R
B
Cc D
D E
E F
F G
G H
=
16—l le—16—
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1077 for input values in the range of 2 fo +2z
radians.
Status Affected: Sign, Zero
STACK CONTENTS
BEFORE AFTER
A |—T05—= R
B
c
D
32




SMUL

16-BIT FIXED-POINT
MULTIPLY, LOWER

7 € 5 4 3 2 2 | 0.
Binary Coding: [sr [ 1 [ 1 [0 [1 [ 1 [ 1] 0]
Hex Coding:  EE with sr = 1
B6E with sr = O
Execution Time: B4 to 94 clock cycles
Description:

16-bit fixed-point two's complementinteger operand A at the TOS
i multiplied by the 16-bit fixed-point two's complement integer
operand B at the NOS. The 16-bit leas! significant half of the
product R replaces B and the stack is moved up so that R
occupies the TOS. The most significant half of the product is lost.
Operands A and B are lost. All other operands are unchanged.
The overflow status bit is set if the discarded upper hall was
non-zere. If either A or B is the most negative value that can be
represented in the format, that value is returned as R and the
overflow status is set.

Status Atfected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER

A TOS A

B c

c D

D E

E F

F G

G H

H 3
16— —15—=
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SMUU

16-BIT FIXED-POINT
MULTIPLY, UPPER

7 6 5 4 3 2 1 4@
Binary Coding: [ s [ 1 [ 1 [ 1 °_{‘li[£‘l

Hex Coding: F6 with st = 1

76 with st = 0
Execution Time: 80 o 98 clock cycles
Description:

16-bit fixed-point two's complement integer operand A at the
TOS is multiplied by the 16-bit fixed-point two's complement
integer operand B at the NOS. The 16-bil most significant half
of the product R replaces B and the stack is moved up so that
R occupies the TOS. The least significant half of the product
is lost. Operands A and B are lost. All other operands are un-
changed.

If either A or B is the mos! negative value that can be rep-
resented in the format, that value is returned as R and the
overflow status is sel

Status Affected: Sign, Zero, Error Field

STACK CONTENTS
BEFORE AFTER
A | 108 R
B c
¢ | )
D E
E & |
F G
G H
. —
l— 16— fe—16—=
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SQRT

32-BIT FLOATING-POINT SQUARE ROOT

i 6 5 4 3 2 1 ]
Binary Coding: I sr T ) [ 1] | (4] 0 0 0 : |
Hex Coding: 81 with sr = 1
01 with sr = 0
Execution Time: 782 to 870 clock cycles
Description:

32-bit floating-point operand A at the TOS is replaced by R, the
32-bit floating-point square root of A. Operands A and D are lost.
Operands B and C are not changed.

SQRT will accept any non-negalive input data value that can be
represented by the data format. If A is negalive an error code of
0100 will be returned in the status register.

Status Atfected: Sign, Zero, Error Field

BEFORE STACK CONTENTS AFTER
A ~——TO08 —= R
8| 8
Cc
—
le—32— < —3a— |

SSUB

16-BIT FIXED-POINT SUBTRACT

7 6 5 4 3 2 1 0
BInaryCoding:!sr| i\ ‘ 1 ] 0 | 1 ‘J |nj 1 ‘

Hex Coding:  ED with sr = 1

6D with sr = 0
Execution Time: 30 to 32 clock cycles
Description:

16-bit fixed-point two's complement integer operand A at the
TOS is subtracted from 16-bit fixed-point two's complement in-
teger operand B at the NOS. The result R replaces B and the
stack is moved up so that R occupies the TOS. Operand B is
lost. All other operands are unchanged.

If the sublraction generates a borrow it is reported in the carry
status bit. if A is the most negative value that can be rep-
resented in the format the overflow status is set. Il the result
cannot be represented in the format range, the overfiow
status is set and the 16 least significant bits of the result are
returned as R,

Status Affected: Sign, Zero, Carry, Error Field

TAN
32-BIT FLOATING-POINT TANGENT

7 (] 5 4 3 2

IR

Binary Coding:
Hex Coding: B4 withsr = 1
04 with sr = 0
Execution Time: 4894 to 5886 clock cycles for Al -~ 2 '
radians
30 clock cycles for 1Al = 272 radians
Description:

The 32-bit floating-point operand A at the TOS is replaced by
the 32-bit floating-point tangent of A. Operand A is assumed
to be in radians. A, C and D are losl. B is unchanged.

The TAN function will accept any inpul data value that can be

represented in the data format. All input data values aré

range-reduced to fall within /4 1o +7/4 radians. TAN is un-
bounded for input values near odd multiples of =/2 and in
such cases the overflow bit is set in the status register. For
angles smaller than 27 '? radians, TAN returns A as the tan-

gent of A.

Accuracy: TAN exhibits a maximum relative error of 50 x
10 7 for input data values in the range of ~2r to
+2r radians except for data values near odd mul-
tiples of /2,

Status Affected: Sign, Zero, Error Field (overflow)

BEFORE  STACK CONTENTS  AFTER
A l-—T05 —| A
B
c
D
f——32——

XCHD

EXCHANGE 32-BIT STACK OPERANDS

5 4 3 2
1

7 8 10
Binary Coding: [ sr | 0 | 1]1]o]o]1]

Hex Coding: B9 withsr = 1

39 with sr = 0
Execution Time: 26 clock cycles
Description:

32-bit operand A at the TOS and 32-bit operand B at the NOS
are exchanged. After execulion, B is al the TOS and A is al
the NOS. All operands are unchanged. XCHD and XCHF
execute the same operation.
Status Affected: Sign, Zero

BEFORE  STACK CONTENTS AFTER
A TOS &}
B c
c 5]
D E
| E F
| F G
G H
H A
16— 15—

76

BEFORE  STACK CONTENTS  AFTER
A ~t0s— B |
B | - A |
c ) c
D o |
le—— 32— a2




XCHF

EXCHANGE 32-BIT
STACK OPERANDS

76 5 4 4 E i 0
Binary Coding: [sr | 0 [0 [ 1 [ 1[0 [0 1]

Hex Coding: 99 with sr = 1

19 with st = 0
Execution Time: 26 clock cycles
Description:

32-bit operand A at the TOS and 32-bit operand B at the NOS
are exchanged. After execution, B is at the TOS and A is at
the NOS. All operands are unchanged. XCHD and XCHF
execute the same operation,
Status Affected: Sian, Zero

STACK CONTENTS
BEFORE AFTER
A —TOS— B
B A
c c |
= D
|e——32 — 32

77
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EXCHANGE 16-BIT
STACK OPERANDS
7 6 5 4 3 2 1 0

Elnuwcuding:lsr ‘ 1 l 1 | 1 1 1 | 0 | OJ 1_]
Hex Coding:  F9 with st = 1

79 with sr = 0
Execution Time: 18 clock cycles
Description:

16-bit operand A at the TOS and 16-bit operand B at the NOS
are exchanged. After execution, B is al the TOS and A is at
the NOS. All operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TO8 P |
c c
D D
E & |
F F
G G
H H
16— 16—




AmBS11A
MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature ~6510 +150°C
VDD with Respect to VSS ~0.5V to +15.0V
VCC with Respect lo VSS ~0.5V to +7.0V
All Signal Valtages with Respect to VSS -0.5V to +7.0V
Power Dissipation (Package Limitation) 20W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of
slatic charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order o
avoid exposure to excessive voltages.

OPERATING RANGE

Part Number Ambient Temperature vss vce VDD
Ama511ADC 0°C = Ta = 70°C ov +5.0V =5% +12V £5%
AmM3511A-1DC 0°C = Tp = 70°C ov +5.0V =5% 12V =5%
Ama511A-4DC 0°C = Ty = 70°C ov +5.0V =5% +12V +5%
Am3511ADI ~40°C = Tp < B5°C ov +5.0V =10% +12V £10%
AmE511A-1DI —40°C = Ty = 85°C v +5.0V +10% +12V 10%
Am@511ADM ~B5°C = Ty = 125°C ov +5.0V £10% +12V £10%
Am3511A-1DM —55°C = Tp = 125°C oV +5.0V £10% +12V =10%

ELECTRICAL CHARACTERISTICS Over Operating Range (Note 1)

Parameters Description Test Conditions Min. Typ. Manx. Units
VOH [ OupuwHIGH Votage | 10K = 2004 37 Voits
voL | Output LOW Vohage | 1OL - 32mA 04 | Vos
VIH | input HIGH Vottage 20 vee vois |

i Input LOW Voltage 05 08 Valts
1% Input Load Current VSS = VI = VCC =10 |
10z Data Bus Leakage Vo =g 0 uh

VO = vee 10
Tp = +25C - 50 2

| 1cc | VCC Supply Current Tp = 0C s | mA
Ta- -55C 100

| Ta = +25°C 50 %0

) VD Supply Curent | T, = 0C - 9 1 mA
Tp = -55C 100
co Qutput Capacitance 8 10 pF
cl | Iput Capasitance fe = 1.0MHz, lnputs = OV B ' o
cio li0 Capacitance pF




Am9511A
SWITCHING CHARACTERISTICS
AmI511A Am3511A-1 Am9511A-4
Parameters Description Min Max Min Max Min Max Units.
TAPW EACK LOW Pulse Width 100 75 50 ns
TCDR C/0 to RD LOW Set-up Time 0 0 0 ns
TCDW G/D to WR LOW Set-up Time 0 0 ns
TCPH Clock Pulse HIGH Width 200 140 100 ns
TCPL Clogk Pulse LOW Width 240 160 120 ns
CS LOW to D LOW
TCSR Sotup Tie ] 0 0 ns
TCSW TS LOW to WR LOW Set-up Time 0 0 0 ns
TCY Clock Period 480 5000 320 3300 250 2500 ns
Data Bus Stable o WR
ToW HIGH Set-up Time 150 100 (Note 8) 100 ns
TEAE EACK LOW to END HIGH Delay 200 175 150 ns
TEPW END LOW Pulse Width (Note 4) 400 300 200 ns
Data Bus Output Valid lo
o PAUSE HIGH Delay 0 9 v gi]
TPEWR PAUSE LOW Pulse ] Data 3.5TCY+50 | 5.5TCY-+300 | 3.5TCY+50 | 5.5TCY+200| 3.5TCY+50 | S.57CY+200|
Width Read (Note 5) [ Status  |1.5TCY+50 | 35TCY+300 | 1.5TCY +50 | 3.5TCY+200) 1.5TCY+50 | 3.5TCY +200
PAUSE LOW Pulse Width Write
TPPAW | (e g) 50 50 50 ns
PAUSE HIGH to AD
R HIGH Hold Time 9 9 0 s
PAUSE HIGH to WA
ey HIGH Hold Time 2 2 b =
TRCD D HIGH to G/D Hold Time 0 0 ] ns
TRCS D HIGH 1o GS HIGH Hold Time 0 0 0 ns
TRO RO LOW to Data Bus ON Delay 50 50 25 ns
RO LOW 1o PAUSE LOW
TAP Delay (Note 6) 150 100 (Note 9) 100 ns
TRZ RD HIGH to Data Bus OFF Delay 50 200 50 150 25 100 ns
TSAPW | SVACK LOW Pulse Width 100 75 50 ns
SVACK LOW to SVREQ
TSAR LOW Delay 300 200 150 ns
TWCD A HIGH 1o C/D Hold Time 60 30 30 ns
TWCS WA HIGH to CS HIGH Hold Time &0 30 30 ns
TWD WR HIGH to Data Bus Hold Time 20 20 20 ns
= 7 & aTeY 3TCY atcy
il Wit nactive Time "5y aToY 4TCY aTCY b
WH LOW to PAUSE LOW
TWe Delay (Note 6) 150 100 (Note 9) 100 ns
Notes: 1. Typical values are for T = 25°C, nominal supply voltages and nominal processing parameters.

2. Switching parameters are listed in alphabetical order.

3, Test conditions assume transition times of 20ns or less, outpul loading of one TTL gate plus 100pF and timing reference levels of 0.8V
and 2.0V.

4, END low pulse width is specified for EACK tied to VSS. Otherwise TEAE applies.

5, Minimum values shown assume no previously entered command is being executed for the data access. If a previously entered command is
being executed, PAUSE LOW Pulse Width is the time lo complete execution plus the time shown. Status may be read at any time without
exceeding the time shown.

6. PAUSE is pulled low for both command and data operations.

7. TEX is the execution time of the current command {see the Command Execution Times table)

8. PAUSE low pulse width is less than 50ns when writing inta the dala port or the control port as lang as the duty requirement (TWI) is observed

and no previous command is being executed. TWI may be safely violated up to 500ns as long as the extended TPPWW that resulls is
observed, If a previously entered command is being execuled. FAUSE LOW Pulse Width is the time to complele execution plus the
time shown.

9. 150ns for the Am9511A-1DM.
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SWITCHING WAVEFORMS
INPUT WAVEFORMS FOR AC TESTS
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Am8511A

APPLICATION INFORMATION

The diagram in Figure 2 shows the interface connections for

the Amg511A APU with operand transfers handled bv an

Amas517A DMA controller, and CPU coordination handled by an

Am9519A Interrupt Controller. The APU interrupts the CPU to

indicate that a command has been completed. When the per-
ided by the DMA and Interrupt

operalions are not required. the APU interface can be
simplified as shown in Figure 1. The Am8511A APU is de-
signed with a general purpose 8-bit data bus and interface
control so that it can be conveniently used with any general
8-bit processor.

ADDRESS BUS

D

So— b
pocs WA AmEsIA

]
l
=

o ARTHMETIC
1% cux PROCESSOR
g " uNiT
noY FAUSE
SYSTEM DATA BUS -3

0183289

Figure 1. Am9511A Minimum Configuration Example.
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PHYSICAL DIMENSIONS
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Am9512

Floating Point Processor

DISTINCTIVE CHARACTERISTICS

® Single (32-bit) and double (64-bit) precision capability
@ Add, subtract, mulliply and divide functions
@ Compalible with proposed IEEE format

® Easy interfacing to microprocessors

.
.
.
.
.
.
.

8-bit data bus

Standard 24-pin package

12V and 5V power supplies
Stack oriented operand slorage
Direct memory access or programmed IO Data Transfers
End of execution signal

Error interrupt

All inputs and outputs TTL level compatible
Advanced N-channel silicon gate MOS technology

GENERAL DESCRIPTION

The AmS512 is a high fioating-point proc unit
(FPUY). It provides single precision (32-bit) and double precision
(B4-bit) add, subtract, multiply and divide operations. It can be
easily interfaced lo enhance the computational capabilities of
the host microprocessor.

The operand, result, status and command information transfers
take place over an 8-bil bidirectional data bus. Operands are
pushed onto an internal stack by the host processar and a com-
mand is issued to perform an operation on the data stack. The
results of this operation are available to the host processor by
popping the stack.

Information transfers between the Am8512 and the host proces-
sor can be handled by using programmed /O or direct memory
access lechniques. After completing an operation, the Am9512
activates an “end of execution” signal that can be used to inter-
rupt the host processor.

<
g
g

BLOCK DIAGRAM

CONSTANT AOM
128 % 17

TWO PORT DATA STACK cLOCK
axar GENERATOR

¢

v

17817 BUS

0
K~

= WORKING REGISTERS I ARITHMETIC UNIT 0,
0xI7 17ens
SVACK
[ — il
SEQUE AND CONTROL ==
3 -
END
ROINSTRUCTION CONTROL
REGISTER
DBo cb
oB1
2 4 =
B2
I .
-y i pricaram [N conrriow mow W
- counren | A T8 X 18
o6 vV
o M PAUSE
on7
MOS- 203
ORDERING INFORMATION
Ambient Maximum Clock Frequency
Package Temperature Vss Voo 2MHz 3MHz
0C = Ta = 70°C ov +50V +5% | +12V =5% Amg5120C AmO512-1DC
Hermetic DIP 40°C = Ty = +85°C ov +50V =10% | +12V =10% Am3512D1 Amg512-1D1
~55°C = Ty < +125°C ov +50V +10% | +12V 210% | Amg9512DMB | Amg512-1DMB

02047B-MMP



Am9512

CONNECTION DIAGRAM

Top View
vss [ - et 24 [ Jeno
vee[]2 2| ek
EAEK [ |2 22 [ RESET
SVACK [_| 4 a [ Jcb
svaeo [ | s 0 [_]AD
SO e BT
USE _ w[ &8
oBo[|e 17 [] PAUSE
oe s [ ] voo
P = 18 [ oar
oB3 [ |1 w4 []oas
oBa [ | 1w [ Joes

Note: Pin 1 is marked for orientation. MOS-204

INTERFACE SIGNAL DESCRIPTION
VCC: +5V Power Supply

VDD: +12V Power Supply

VSS: Ground

CLK (Clock, Input)

An external timing source connecled to the CLK input provides
the necessary clocking.

RESET (Reset. Input)

A HIGH on this input causes Initialization. Reset terminates any
operation in progress, and clears Ihe status register lo zero. The
internal stack pointer is initialized and the conlents of the stack
may be affected. After a reset the END output, the ERR output
and the SVREQ output will be LOW. For proper initialization,
RESET must be HIGH for at least five CLK periods following
stable power supply vollages and stable clock.

C/D (Command/Data Select, Input)

The G/B input together with the AID and WR Inputs determines the
type of transfer to be performed on the data bus as follows:

cb | RD | WR Function
L H L Push data byte into the stack
7 L H | Pop data byte from the stack
H H L Enter command
H L H Read Status
X L L Undefined
L = Low
H = HIGH
X = DON'T CARE

END (End of Execution, Qutput)

A HIGH on this output indicates that execution of the current
command is complete. This oulput will be cleared LOW by ac-
tivating the EACK input LOW or performing any read or write
operation or device initialization using the RESET. If EACKs tied
LOW. the END output will be a pulse (see EACK description).

Reading the status register while a command execution is in
progress Is allowed. However any read or write operation clears

the flip-flop that generates the END output. Thus such continu-
ous reading could conflict with internal logic setting of the END
flip-flop at the end of command execution.

EACK (End Acknowledge, Input)

This input when LOW makes the END output go LOW. As men-
tioned earlier HIGH on the END output signals completion of a
command execution. The END signal is derived from an internal
flip-flop which is clocked at the completion of a command. This
flip-iop is clocked to the reset state when EACK is LOW. Con-
sequently, if EACK is tied LOW, the END output will be a pulse
that is approximately one CLK period wide.

SVREQ (Service Request, Output)

A HIGH on this output indicates completion of a command. In
this sense this output is the same as the END output. However,
the Service Bit in the Command Register determines whether
the SVREQ output will go HIGH at the completion of a com-
mand. This bit must be 1 for SVREQ to go HIGH. The SVREQ
can be cleared (i.e., go LOW) by activating the SVACK input
LOW or initializing the device using the RESET. Also, the
SVREQ will be automatically cleared after completion of any
command that has the service request bit as 0.

SVACK (Service Acknowledge, Input)

A LOW on this input clears SVREQ. If the SVACK inpul is per-
manentlly tied LOW, it will conflict with the internal setting of the
SVREQ outpul. Thus the SVREQ indication cannot be relied
upon if the SVACK is tied LOW.

DB0-DB7 (Data Bus, Input/Output)

These eight bidirectional lines are used 1o transfer command,
status and operand information between the device and the host
processor. DBO is the leas! significant and DB7 is the most
significant bit position. HIGH on a data bus line corresponds ta 1
and LOW corresponds o 0.

When pushing operands on the stack using the data bus, lhe least
significant byte must be pushed first and most significant byte
last. When popping the stack o read the result of an operation,
the most significant byte will be available on the data bus first and
the least significant byte will be the last. Moreover, for pushing
operands and popping results, the number of lransactions must
be equal ta the proper number of bytes appropriate for the chosen
format. Otherwise, the internal byte pointer will not be aligned
properly. The Am9512 single precision format requires 4 byles
and double precision format requires B bytes

ERR (Error, Output)

This output goes HIGH te indicate that the current command
execution resulted in an error condition. The error conditions
are: attempt to divide by zero, exponent overflow and exponent
underfiow. The ERR oulpul is cleared LOW on read stalus reg-
ister operation or upon RESET.

The ERR output is derived from the error bits in the status
register. These error bits will be updated internally at an appro-
priate time during a command execution. Thus ERR output going
HIGH may not correspond with the completion of a command.
Reading of the status register can be performed while a com-
mand execution is in progress. However it should be noted that
reading the status register clears the ERR output. Thus reading
the status register while a command execulion in progress may
result in an internal conflict with the ERR output

86




Am9512

TS (Chip Select, Input)

This inpul mus! be LOW to accomplish any read or write operation
to the Am9512,

To perform a write operation, appropriate data is presented on
DBO through DBY lines, appropriate logic level on the C/D input
and the CS input is made LOW. Whenever WR and RD inputs
are both HIGH and CS is LOW, PAUSE goes LOW. However
actual writing into the Amg512 cannot start until WR is made
LOW. After initiating the write operation by the HIGH to LOW
transition on the WR input, the PAUSE output will go HIGH
indicating the write operation has been acknowledged. The WR
input can go HIGH after PAUSE goes HIGH. The data lines, cib
input and the CS input can change when appropriate hald time
requirements are satisfied. See write timing diagram for details.

To perform a read operation an appropriate logic level is estab-
lished on the C/D input and CS is made LOW. The PAUSE output
goes LOW because WR and AD inputs are HIGH. The read
operation does not start untilthe RD input goes LOW. PAUSE will
go HIGH indicating that read operation is complete and the re-
quired information is available on the DBO through DB7 lines. This
information will remain on the data lines as long as AD is LOW.
The RD input can return HIGH anytime after PAUSE goes
HIGH. The CS input and C/D input can change anytime after RD
returns HIGH. See read timing diagram for details. If the CSis
tied LOW permanently, PAUSE will remain LOW until the next
Am9512 read or write access.

RD (Read, Input)

A LOW on this input is used 1o read information from an internal
location and gate that information onto the data bus. TheCS input
must be LOW to accomplish the read operation. The C/D input
determines what internal location is of interest. See C/D. CS input
descriptions and read timing diagram for details. If the END

output was HIGH, performing any read operation will make the
END output go LOW after the HIGH to LOW fransition of the RD
input (assuming CS is LOW), If the ERR output was HIGH per-
forming a status register read operation will make the ERR out-
put LOW. This will happen atter the HIGH to LOW transition af
the RD input (assuming CS is LOW).

WR (Write, Input)

A LOW on this input is used 1o transfer information from the data
bus into an internal location. The CS must be LOW to accomplish
the write operation. The C/D determines which internal location is
to be written, See C/D. CS input descriptions and write timing
diagram for details.

If the END output was HIGH, performing any write operation will
make the END outputgo L@_‘V after the LOW to HIGH transition of
the WR input (assuming CS is LOW).

PAUSE (Pause, Output)

This output is a handshake signal used while performing read or
wrile transactions with the Amg512. If the WR and RD inputs are
both HIGH, the PAUSE output goes LOW with the CS input in
anticipation of a transaction, If WR goes LOW to initiate a write
transaction with proper signals established on the DBO-DB7, G/D
inputs, the PAUSE will return HIGH indicating that the write
operation has been accomplished. The WR can be made HIGH
after this event. On the other hand, if a read operation is desired,
the RD input is made LOW atter activating CS LOW and estab-
lishing proper C/Dinput. (The PAUSE will go LOW in response to
CS going LOW.) The PAUSE will return HIGH indicating comple-
tion of read. The RD can return HIGH after this event. It should be
noted that a read or write operation can be initiated without any
regard to whether a command execution is in progress or not.
Proper device operation is assured by obeying the PAUSE output
indication as described

FUNCTIONAL DESCRIPTION

Major functional units of the Am3512 are shown in the block
diagram. The Am8512 employs a microprogram controlled stack
oriented architecture with 17-bit wide data paths.

The Arithmetic Unit receives one of its operands from the
Operand Stack. This stack is an eight word by 17-bit two port
memory with last in — first out (LIFO) attributes. The second
operand to the Arithmetic Unit is supplied by the internal 17-bit
bus. In addition to supplying the second operand, this bidirec-
ticnal bus also carries the results from the output of the Arithmetic
Unit when required. Writing into the Operand Stack takes place
from this internal 17-bit bus when required. Also connected to this
bus are the Constant ROM and Working Registers. The ROM
provides the required constants to perform the mathematical
operations while the Working Registers provide storage for the
intermediate values during command execution.

Communication between the external world and the Am3512
takes place on eight bidirectional input/output lines, DBO through

DB7 (Data Bus). These signals are gated lo the internal 8-bit bus
through appropriate interface and buffer circuilry. Multiplexing
facilities exis! for bidirectional communication between the inter-
nal eight and 17-bit buses. The Status Register and Command
Register are also located on the 8-bit bus.

The Amg512 operations are controlied by the microprogram
contained in the Control ROM. The Program Counter supplies the
microprogram addresses and can be partially loaded from the
Command Register. Associated with the Program Counter is the
Subroutine Stack where return addresses are held during sub-
routine calls in the microprogram. The Microinstruction Register
holds the current microinstruction being executed. The register

pipelined microp execution. The Instruction De-
code logic generates various internal control signals needed for
the Am9512 operation.

The Interlace Control logic receives several external inputs and
provides handshake related outputs to facilitate interfacing the
Am9512 to microprocessors.

COMMAND FORMAT

The Operation of the Am3512 is controlled from the host proces-
sor by issuing instructions called commands. The command for-
mal is shown below

SVAED QP CODE
ENB.
i Jee L L=]

7 & 5 4 3 2 1 [ ]
The command consistsof 8 bils; Ihe least significant 7 bits specity
the operation to be performed as detailed in the accompanying

table. The most significant bit is the Service Request Enable bit.
This bit must be a 1 if SVREQ Is to go high at end of executing a
command.

The Am9512 commands fall into three categories: Single preci-
sion arithmetic, double precision arithmetic and data manipula-
tion. There are four arithmetic operations that can be performed
with single precision (32-bit), or double precision (64-bit)
floating-point numbers: add, subtract, multiply and divide. These
operations require two operands. The Am9512 assumes that
these operands are located in the internal stack as Top of Stack
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(TOS) and Next on Stack (NOS). The result will always be re-
turned to the previous NOS which becomes the new TOS. Re-
sults from an operation are of the same precision and format as
the operands. The results will be rounded lo preserve the accu-
racy. The actual data formats and rounding procedures are de-
scribed in a later section. In addition to the arithmetic operations,
the Am8512 implements eight data manipulating operations.
These include changing the sign of a double or single precision

operand located in TOS, exchanging single precision operands
located at TOS and NOS, as well as copying and popping single
or double precision operands. See also the sections on slatus
register and operand formats.

The Execution times of the Am9512 commands are all data
dependent. Table 2 shows ane example of each command exe-
cution time:

Table 1. Command Decoding Table.

Command Bits
7 6 5 4 3 2 1 0| Mnemonic Description
X 0000001 SADD Add TOS 1o NOS Single Precision and resull to NOS. Pop stack
X 00000 1 0| SsuB Sublract TOS from NOS Single Precision and resull lo NOS. Pop stack,
X 00000 1 1 SMUL Multiply NOS by TOS Single Precision and result to NOS. Pop stack
X 0000100 sowv Divide NOS by TOS Single Precision and result 1o NOS, Pop stack.
X0 00 0148 8 CHSS Change sign of TOS Single Precision operand N
X 00001 1t 0| PTOS Push Single Precision operand on TOS 1o NOS
X 0000 111 POPS Pap Single Precision operand from TOS. NOS becomes TOS
X 0 00 1 0 0 0| XCHS Exchange TOS with NOS Single Precision.
X 0 1 0 11 0 1| CHSD Change sign of TOS Double Precision aperand
X 0101110 PTOD Push Double Precision operand on TOS to NOS. N
X 01 011 1 1| POPD Pop Double Precision operand from TOS. NOS becomes TOS =
X 00 0000 0| CLA CLR staius. g——
X 0101001 DADD Add TOS ta NOS Double Precision and result to NOS. Pop stack
X 0101 01 0| DSuB Subtract TOS from NOS Double Precision and resulf to NOS, Pop stack
X0 1010 11 DMuL i mrﬂy_m);y 1;5 D:u;re:bn_an-d Jm NOS. Pop stack. |
¥ 0 1 0 1 1 0 0| DDV Divide NOS by TOS Double Precision and resull lo NOS. Pop Stack

Operation for bit combinations not listed above is undefined.

Table 2. Am9512 Execution Time in Cycles.

Single Precision Double Precision

Min Typ Max Min Typ Max
Add 58 220 512 Add 578 1200 3100
Subiract 56 220 512 Subiract 578 1200 3100
Muitiply 192 220 254 Multiply 1720 1770 1860
Divide 228 240 254 Divide: 4560 4920 5120

Note: Typical for add and sublract, assumes the operands are within six decimal orders of magnilude. Max is derved from the

time of 1000 with random 32-bit or 64-bil patterns.
Table 3. Some Execution Examples.
Command TOS NOS Result Clock periods
SADD 3FB00000 IFB00000 40000000 58
ssus 3FBUOO00O 3FB00000 00000000 56
SMUL 40400000 IFCOD000 40900000 198
so 40000000 3FB00000 IFO00DDD 228
CHSS 3F800000 BFB00000 0
PTOS AFBO0000 , 18
POPS 3F800000 - “
XCHS 3F800000 4000000 - 26
CHSD 3FFOOD0000000000 - BFF0000000000000 24
FTOD 3FFOO00000000000 - 40
POPD 3FFBO00000000000 = = 26
CLR 3FFOO00000000000 = = 4
DADD 3F 578
DsUB F 578
DMUL BFF IFF 1748
DoV BFFBC F 4560

Note: TOS, NOS and Result are in hexadecimal; Clock period is in decimal.
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COMMAND INITIATION

After properly p the required op in the stack, a
command may be issued. The procedure for initiating a command
execulion is as follows:

1. Establish appropriate command on the DB0-DB7 lines.

2. Est; HIGH on the C/D input.

Establish LOW on the CS input. Whenever WH and RD inputs

are HIGH the PAUSE output follows the CS input, Hence

PAUSE will become LOW.

Establish LOW on the WR input after an appropriate set up

time (see timing diagrams).

. Sometime after the HIGH to LOW level transition of WR input,
the PAUSE output will become HIGH to acknowledge the write
operation. The WR input can return to HIGH anytime after
PAUSE goes HIGH. The DB0-DB7, C/D and CS inputs are
allowed to change after the hold time requirements are salis-
fied (see timing diagram).

An attempt to issue a new command while the current command

execution is in progress is allowed. Under these circumslances,

the PAUSE output will not go HIGH until the current command
execution is completed.

@

>

o

OPERAND ENTRY

The Am8512 commands operale on the operands located at the
TOS and NOS and results are returned 1o the stack at NOS and
then popped to TOS. The operands required for the Am9512 are
one ol two formats — single precision floating-point (4 bytes) or
double precision floating-point (8 bytes). The result of an opera-
tion has the same format as the operands. In ather words, op-
erations using single precision quanlities always result in a
single precision result while operations involving double preci-
sion guantities will result in double precision result.

Operands are always entered into the stack least significant byte
first and most significant byte last. The foliowing procedure must
be followed to enter operands into the stack:

1. The lower significant operand byle is established on the
DBO-DB7 lines.

. ALOW is established on the C/D input fo specify that datais to

be entered into the stack.

The CS input is made LOW. Whenever IheWH and RD inputs

are HIGH, the PAUSE output will follow the CS input. Thus

PAUSE output will become LOW.

After appropriate set up lime (see timing diagrams), the WR

input is made LOW.

Sometime after this event, PAUSE will return HIGH to indi-

cate that the write operation has been acknowledged.

Anytime after the PAUSE output goes HIGH the WR input can

be made HIGH. The DB0-DB7, C/D and CSinputs can change

after appropriate hold time requirements are satisfied (see

timing diagrams).

The above procedure must be repeated until all bytes of the

operand are pushed inta the stack. It should be noled that for

single precision operands 4 bytes should be pushed and 8 bytes

must be pushed for double precision. Not pushing all the bytes of

a quantity will result in byte pointer misalignment.

[

@
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The Am9512 stack can accommodate 4 single precision quan-
tities or 2 double precision quantities. Pushing more quantities
than the capacity of the stack will result in loss of data which is
usual with any LIFO slack.

REMOVING THE RESULTS

Result from an operation will be available at the TOS. Results can
be transferred from the stack to the data bus by reading the stack.

When the stack is popped for results, the most significant byle is
available first and the least significant byte last. A result is always
of the same precision as the operands that produced it. Thus
when the result is taken from the stack, the tolal number of bytes
popped oul should be appropriate with the precision — single
precision resulls are 4 bytes and double precision results are 8
bytes. The following prodedure must be used for reading the
result from the stack:

1. A LOW is established on the C/D input.

2. The CSinpulis made LOW. When WR and RD inputs are both
HIGH, the PAUSE output follows the TS input, thus PAUSE
will be LOW.

. After appropriate set up time (see timing diagrams). the RD
input is made LOW.

4. Sometime after this, PAUSE will return HIGH indicating that

the data is available on the DBO-DB7 lines. This data will

remain on the DBO-DB7 lines as long as the RD input remains

Low,

Anytime after PAUSE goes HIGH, the RD input can return

HIGH 1o complete transaction.

The €S and C/D inpuls can change after appropriate hoid time

requirements are satisfied (see timing diagram).

Repeal this procedure until all bytes appropriate for the preci-

sion of the result are popped oul.

Reading of the stack does not alter its data; it anly adjusis the byte
pointer. If more data is popped than the capacity of the stack. the
internal byte pointer will wrap around and older data will be read
again, consistent with the LIFO stack.

READING STATUS REGISTER

The Am9512 status register can be read without any regard 1o
whether a command is in progress or nol. The only implication
that has to be considered is the effect this might have on the END
and ERRA outputs discussed in the signal descriptions,

w
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The lollowing procedure must be lollowed to accomplish status
register reading

. Establish HIGH on the C/D input.

. Establish LOW on the CS input. Whenever WR and AD in-
puts are HIGH, PAUSE will follow the CS input. Thus,
PAUSE will go LOW.

After appropriate set up time (see liming diagram) FD is
made LOW. ..
Sometime after the HIGH to LOW transition of RD, PAUSE
will become HIGH Indicating thal stalus register conlents are
available on the DBO-DB?7 lines. These lines will contain this
information as long as AD is LOW.

The RD input can be returned HIGH anylime after PAUSE
goes HIGH, s

The C/D input and TS input can change after satisfying ap-
propriate hold time requirements (see timing diagram).

o -

-

»

w

o

DATA FORMATS

The Am9512 handles floating-point quantities in two different
formats - single precision and double precision. The single pre-
cision quantities are 32-bits long as shown below.

[ IMPLIED BIT

Bit 31:
§ = Sign of the mantissa. 1 represents negative and O repre-
sents positive.
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Bits 23-30

E = These 8-bils represent a biased exponent. The bias is
271 =127

Bits 0-22

M = 23-bit mantissa. Together with the sign bit, the mantissa
represents a signed fraction in sign-magilude notation.
There is an implied 1 beyond the most signif

STATUS REGISTER

The Am9512 contains an 8-bit status register with the following
format.

ovioe_ | exeonent | exvonent
Isusv !»gn 25;10 RESERVED | EXCEPTION |UNDERFLOW | OVERFLOW | RESEAVED
bit (bit 22) 2 4 i
T e 0 3 7 T

of the mantissa. In other words, the mantissa is assumed to
be a 24-bit normalized quantity and the most significant bit
which will always be 1 due to normalization is implied. The
Amg512 restores this implied bit internally before performing
arithmetic; normalizes the result and strips the implied bit
before returning the results to the external data bus. The
binary point is between the implied bit and bit 22 of the
mantissa.

The quantity N represented by the above notation is

Bias
l—
e '-—Elinary Point
M)

N=(-1)5 2@

Provided E # O orall 1's.

A double precision quantity consists of the mantissa sign bit(s),
an 11 bit biased exponent (E), and a 52-bit mantissa (M). The bias
for double precision quantities is 2'° — 1. The double precision
format is illustrated below.

Bit 0 and bit 4 are reserved. Occurrence of exponent oerflow (V),
exponent underflow (U) and divide exceplion (D) are indicated
by bits 1, 2 and 3 respectively. An attempt to divide by zero is the
anly divide exception. Bits 5 and 6 represent a zero result and
the sign of a result respectively. Bit 7 (Busy) of the status regis-
ter indicates if the Am9512 is currently busy executing a com-
mand. All the bits are initialized to zero upon reset. Also,
executing a CLR (Clear Status) command will result in all zero
slatus register bits, A zero in Bit 7 indicates that the Am9512 is
not busy and a new command may be initiated. As soon as a
new command is issued, Bit 7 becomes 1 lo indicate the device
is busy and remains 1 until the command execution is complete,
at which time it will become 0. As soon as a new command is
issued, status register bits 0, 1, 2, 3, 4, 5 and 6 are cleared to
zero. The status bits will be set as required during the command
execution. Hence, as long as bit 7 is 1, the remainder of the
status register bit indications should not be relied upon un-
less the ERR occurs. The following is a detailed status bit
description.

Bit 0 Reserved

Bit 1 Exponent overflow (V): When 1, this bit indicates that

[ WPUED EIY exponent overflow has occurred. Cleared lo zero
otherwise.

] s|e ] Bit2 Expaonent Underflow (U): When 1, this bit indicates that

— “‘ lﬂ “| L - 1 - has occurred. Cleared to zero
otherwise.

Bit 3 Divide Exception (D): When 1, this bit indicates that an

Bit 63: attempt to divide by zero is made. Cleared to zero
S = Sign of the mantissa. 1 represents negative and 0 repre- otherwise.
sents positive. Bit4 Reserved

Bits 52-62 Bit 5 Zero(Z): When 1, this bitindicates that the result returned

E = These 11 bils represen! a biased exponent. The bias is to TOS after a command is all zeros. Cleared to zero
210 _ 1 = 1p23. otherwise.

Bit 0-51 Bit 6 Sign(S): When 1, this bitindicates that the result returned

M = 52-bit mantissa. Together with the sign bit, the mantissa
represents a signed fraction in sign-magnitude notation.
There is an implied 1 beyond the most significant bit (bit 51)
of the mantissa. In other words, the mantissa is assumed to
a 53-bit normalized quantity and the most significant bit,
which will always be a 1 due to normalization, is implied. The
Amg512 restores this implied bit intemally before perform-
ing arithmetic; normalizes the result and strips the implied bit
before returning the result to the external data bus. The
binary point is between the implied bit and bit 51 of the
mantissa.

The quantity N represented by the above notation is

l_ Bias

——

Binary point
N=(-1) 22—(2‘04) t‘li‘M)

Provided E # 0 or all 1's.

1o TOS is negalive. Cleared to zero otherwise.

Busy: When 1, this bit indicates the Am8512 is in the
process of executing a command. It will become zero after
the command execution is complete.

Bit 7

All other status register bits are valid when the Busy bit is zero.

ALGORITHMS OF FLOATING-POINT ARITHMETIC

1. Floating Point to Decimal Conversion

As an introduction to floating-point arithmelic, a brief descrip-

tion of the Decimal equivalent of the Am9512 floating-point

format should help the reader to understand and verify the

validity of the arithmetic operations. The Am9512 single preci-

sion formal is used for the following discussions. With a minor

modification of the field lengths, the discussion would also

apply to the double precision format.

There are three parts in a floaling point number:

a. Thesign - the sign applies to the sign of the number. Zero
means the number is positive or zero, One means the
number is negative.
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b. The exponent - the exponent represents the magnitude of
the number. The Am3512 single precision format has an
excess 127, notation which means the code representa-
tion is 127, higher than the actual value. The following are
a few examples of actual versus coded exponent

Actual Coded

412749 +254,
0 12710

~1264g +140

c. The mantissa — the mantissa is a 23-bit value with the
“ binary point to the left of the most significant bit. There is a
hidden 1 to the left of the binary point so the mantissa is
always less than 2 and greater than or equal 1o 1.
Tofind the Decimal equivalent of the floating point number,
the mantissa is multiplied by 2 to the power of the actual
exponent. The number is negated if the sign bit = 1. The
following are two examples of conversion:

Example 1

Floating Poini No. = 0 10000011110000000000000000000008
Sign Exponent Manlissa

Coded Expanent = 100000118

Actual Exponent ~ 100000118 D1111111B=000001008 = 45

Mantissa = 1110000000000000000000008

1412+ 14

= 1750
Decimal No. = 2* % 1.75 = 16 % 1.76 = 28y

Example 2

Floating PaintNo. = 1011 11010011000000000000000000008
Sign Exponent Maniissa

Coide Exponent « 011110108

Actual Exponent = 011110108 -011111118=11111011B= 5y

Mantissa 1011000000000000000000008
=4+ 14+ 1B = 1875

Decimal Ho. = -2 % x 1,375 = — 042068759

2. Unpacking of the Floating-Point Numbers

The Amg512 unpacks the floating point number into three
parts before any of the arithmetic operation. The number is
divided into three parts as described in Section 1. The sign and
exponent are copied from the original number as 1 and 8-bil
numbers respectively. The mantissa is stored as a 24-bit
number. The least significant 23 bits are copied from the
original number and the MSB is set lo 1. The binary point is
assumed lo the right of the MSB.
The abbreviations listed below are used in the following sec-
tions of algorithm description:

SIGN - Sign of Result

EXP - Exponent of Result

MAN — Mantissa of Result

SIGN (TOS) - Sign of Top of Stack

EXP (TOS) - Exponent of Top of Stack

MAN (TOS) - Mantissa of Top of Stack

SIGN (NOS) - Sign of Next on Stack

EXP (NOS) — Exponent of Next on Stack

MAN (NOS) — Mantissa of Next on Stack

Floating-Point Add/Subtract

The floating-point add and subtract essentially use the same
algorithm. The only difference is that floating-point subtract
changes the sign of the floating-point number at top of stack
and then performs the floaling-point add.

The following is a step by step description of a fioating-point
add algorithm (Figure 1):

w

&

tn

o

Unpack TOS and NOS.
b. The exponent of TOS is compared to the exponent of
NOS.
If the exponents are equal, go to step f.
Right shift the mantissa of the number with the smaller
exponent.
Increment the smaller exponent and go to step b,
Set sign of resull to sign of larger number.
Set exponent of result to exponent of larger number.
If sign of the two numbers are not equal, go 1o m.
Add Mantissas.
Right shift resultant mantissa by 1 and increment expo-
nent of result by 1
I MSB of exponent changes from 1 1o 0 as a result of the
increment, set overflow status.
Round if necessary and exil.
. Subtract smaller mantissa from larger mantissa.
Left shift mantissa and decrement exponent of result.
1f MSB of expenent changes from 0 o 1 as a resull of the
decrement, set underflow stalus and exit.
p. If the MSB of the resultant mantissa = 0. go to n.
q. Round if necessary and exil.

* TroFeoe o

eaas

. Floating-Point Multiply

Floating-point multiply basically involves the addition of the

exponents and multiplication of the mantissas, The lollowing

is a step by step description of a floating mulliplication al-

gorithm (Figure 2):

a Check it TOS or NOS = 0.

b. If either TOS or NOS = 0, Set result to 0 and exit.

¢. Unpack TOS and NOS.

d. Convert EXP (TOS) and EXP (NOS) to unbiased form.
EXP (TOS) = EXP (TOS) - 1274
EXP (NOS) = EXP (NOS) ~127:4

e. Add exponents.
EXP = EXP (TOS) + EXP (NOS)

. ItMSB of EXP (TOS) = MSBof EXP (NOS) = 0 and M5B
of EXP = 1, then set overflow status and exit

g. ITMSBof EXP (TOS) = MSB of EXP (NOS) = 1 and MSB
of EXP = 0, then set underflow status and exit.

h. Convert Exponent back o biased form.
EXP = EXP + 127y

i. Iisignof TOS = signof NOS, setsignof resultto 0, else set
sign of result o 1.

j.  Multiply mantissa.

k. If MSB of resultant = 1, right shift mantissa by 1 and
increment exponent of resultant

I. It MSB of expanent changes fram 1to 0 as a result of the
increment, set overflow status.

m. Round if necessary and exit.

Floating-Point Divide

The floating-point divide basically involves the subtraction of

exponents and the division of mantissas. The following is a

step by step description of a division algorithm (Figure 3).

a. I TOS = 0, set divide exception error and exit.

b. If NOS = 0, sel result to 0 and exil

¢. Unpack TOS and NOS.

d. Convert EXP (TOS) and EXP (NOS) to unbiased form.
EXP (TOS) = EXP (TOS) — 12749
EXP (NOS) = EXP (NOS) — 1274

e. Subtract exponent of TOS from exponent of NOS.
EXP = EXP (NOS) — EXP (TOS)

1. If MSB of EXP (NOS) = 0, MSB of EXP (TOS) = 1 and
MSB of EXP = 1, then set overfiow stalus and exit.

g. It MSB of EXP (NOS) = 1, MSB of EXP (TOS) = 0, and
MSB of EXP = 0, then set underflow status and exit.
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SIGH [TOS) =
[_mm |

EXP =
EXP (T08)

SIGN (T0S) =
SIGN (NOSJ?

RIGHT SHIFT EXP =
MAN (TOS) EXP + 1

EXP (T05) =
EXP (T05)

ADDITION
ROUNDING

RIGHT SHIFT
MAN (NOS)

EXP (NOS)
EXP (NOS) + 1

MAN (TOS)
MAN (NOS)
N

SIGH (NOS)

SIGN

AN =
MAN (NOS) — MAM (TOS)

GH = SIGN (TOS)

SUBTRACTION
ROUNDING

Figure 1. Conceptual Floating-Point Addition/Subtraction.

MOS:-208

o

h. Add bias to exponent of result.
EXP = EXP + 12749

i. Ifsignof TOS = signof NOS, setsignof resultto 0, else set
sign of result 1o 1.

j. Divide mantissa of NOS by mantissa of TOS.

K. ItMSB = 0, left shift mantissa and decrement exponent of
resultant, else go to n.

I.  If MSB of exponent changes from 0 to 1 as a result of the
decrement, set underflow status.

m. Goto k.

n. Round if necessary and exit.

The algorithms described above provide the user a means of
verifying the validity of the result. They do not necessarily
reflect the exact internal sequence of the Am3512.

Rounding

The AmS512 adopts a rounding algorithm that is consistent
with the Intel* standard for floating-point arithmetic. The fol-
lowing description is an excerpt from the paper published in
proceedings of Compsac 77, November 1977, pp. 107-112 by
Dr. John F. Palmer of Intel Corporation.

The method used for doing the rounding during floating-point
arithmetic is known as "Round to Even’, i.e., if the resultant
number is exaclly halfway between two floaling point num-
bers, the number is rounded to the nearesl floating-peint
number whose LSB of the mantissais 0. In order to simplify the

ion, the i will be ill d with 4-bit arith-
metic. The existence of an accumulator will be assumed as
shown:

oF B B2 B a R

The bit labels denote:

QOF - The overfiow bit
B1-B4 - The 4 mantissa bits
G -~ The Guard bit

R - The Rounding bit

ST ~ The “Sticky” bit
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RESU!

SIGH =
SIGH (TOS) @) SIGN (NOS)

o |

SET
OVERFLOW
STATUS.

SET
UNDERFLOW
STATUS

MULTIPLICATION

EXIT

Figure 2. C | F

MOS-206

The Sticky bit is set to one if any ones are shifted right of the
rounding bit in the process of denormalizalion. If the Sticky bit
becomes sel. it remains set throughout the operation. All
shifting in the Accumulator involves the OF, G, R and ST bits.
The ST bitis not affected by left shifts but, zeros are introduced
into OF by right shifts.

Rounding during addition of magnitudes — add 1 to the G
position, then if G=R=ST=0. set B4 to 0 ("Rounding 1o
Even”)

Rounding during sublraction of magnitudes — if more than one
left shift was performed, no rounding is needed, otherwise
round the same way as addition of magnitudes.

Rounding during multiplication — let the normalized double
length product be:

Then G=B5, R=B6, ST=B7 V B8. The rounding Is then per-
formed as in addition of magnitudes.

Rounding during division — let the first six vits of the nor-
malized quotient be

Then G=B5, R=B6, ST=0 if and only if remainder = 0. The
rounding is then performed as in addition of magnitudes.
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SET DIVIDE
EXCEPTION
STATUS

iGN
SIGH (1051ESIGN (NOS)

N
Exe
EXP - 127,

Figure 3. Conceptual Floating-Point Division.

SET
. OVERFLOW
STATUS

MOS-207
CHANGE SIGN DOUBLE PRECISION CHANGE SIGN SINGLE PRECISION
7 6 5 4 3 2 1 0 T 6 5 4 3 2 1 0
Binary Coding: [SRE] 0 | 1 [ 0 [ 1 [ 1 [0 | 1 | | BinaryCoding:jsre[ 0 [0 [0 [o [ 1] o[ 1]
Hex Ceding: AD IF SRE =1 Hex Coding: 85 IF SRE = 1
2DIFSRE =0 05IF SRE = 0
Execution Time: See Table 2 Execution Time: See Table 2
Description: Description:

The sign of the double precision TOS operand A is com-
plemented. The double precision result R is returned to TOS. If
the double precision operand A is zero, then the sign is not
affected. The status bit S and Z indicate the sign of the result and if
the result is zero. The status bits U, V and D are always cleared 1o
zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS
BEFORE AFTER

The sign of the single precision operand A at TOS is com-
plemented. The single precision result Ris returned to TOS. If the:
exponenl field of A is zero, all bits of R will be zeros. The status
bits S and Z indicate the sign of the result and if the result is zero
The status bits U, V and D are cleared to zero.

Status Affected: S, Z. (U, V. D always zero.)

STACK CONTENTS

BEFORE AFTER
A Te—T08 — R
B le—NOS—=| B
c ©
B )
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CLR

CLEAR STATUS

7 6 s %732
Binary Coding: [sRE[ 0 [0 [ o[ o] 0

[oTo]

Hex Coding: 80 IF SRE = 1
00 IF SRE =0
Execution Time: 4 clock cycles

Description:

The status bits S, Z, D, U, V are cleared to zero. The stack is not
affected. This essentially is a no operation command as far as
operands are concerned,

Status Affected: S, Z, D, U, V always zero.

DADD

DOUBLE PRECISION FLOATING-POINT ADD

7 6 5 4 3 2 1 0
Binary Coding:[SRE[ 0 [ 1 [ o [ 1[0 [0 [1]
Hex Coding: A9 IF SRE = 1
29IFSRE=10
Execution Time: See Table 2
Description:

The double precision operand A from TOS is added to the double
precision operand B from NOS. The result is rounded lo obtain
the final double precision result R which Is returned to TOS. The
status bits S. Z, U and V are affected to report sign of the result, if
the result is zero. exponent underflow and exponent overflow
respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER
A TOS R
B NOS Undefined

DSUB

DOUBLE PRECISION
FLOATING-POINT SUBTRACT
7 6 5 4 3 2 1 0

Binary Coding: [sRE] 0 [ 1 [0 [1 [ o[ 1] 0]
Hex Coding: AA IF SRE = 1

2AIFSRE = 0
Execution Time: See Table 2
Description:
The double precision operand A at TOS is subtracted from the
double precision operand B at NOS, The result is rounded to
obtain the final double precision result R which is retumed lo
TOS. The status bits S, Z, U and V are affected to report sign of
the result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared lo zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS
AFTER

R
Undefined

BEFORE

DMUL

DOUBLE PRECISION
FLOATING-POINT MULTIPLY

7 6 5 a 3 2 1 0
Binary Coding:[SRE[ 0 | 1 [ 0 | 1] o [ 1] 1]
Hex Coding: AB IF SRE = 1
2BIF SRE =0
Execution Time: See Table 2
Description:

The double precision operand A from TOS is multiplied by the
double precision operand B from NOS. The result is rounded to
obtain the final double precision result R which is retumed to
TOS. The status bits S, Z, U and V are affected to report sign of
the resull, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS
BEFORE AFTER

70§ —=! R
a NOS Undafined
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DDIV

DOUBLE PRECISION
FLOATING-POINT DIVIDE

7 6 5 4 3 2 1 0
Binary Code: ([SRE| 0 1 0 1 1 0 0
Hex Coding: AC IF SRE = 1
2CIFSRE =0
Execution Time: See Table 2
Description:

The double precision operand B from NOS is divided by the
double precision operand A from TOS. The result (quotient) is
rounded to obtain the final double precision result R which is
returned to TOS, The status bits, S, Z, D, U and V are affected to
report sign of the result, if the result is zero, attempt to divide by
zero, exponent underflow and expanent overflow respectively.

Status Affected: S, Z, D, U, V

STACK CONTENT
AFTER

BEFORE
] Ao |
s ] Unceive

Note: I Ais zero, then R = B (Divide exception).

SADD

SINGLE PRECISION FLOATING-POINT ADD

TOS
NOS

7 6 3 4 3 2 1 0
Binary Coding: [SRE| 0 [ o [0 [o [ o]0 |1 ]
Hex Coding: 81 IF SRE = 1
01 IF SRE = 0
Execution Time: See Table 2
Description:

The single precision operand A from TOS is added to the single
precision operand B from NOS. The result is rounded to obtain
the final single precision result R which is retumned to TOS. The
slatus bits S, Z, U and V are affecled to report the sign of the
result, if the resull is zero. exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero

Status Affected: S, Z, U, V. (D always zero.)

SSUB

SINGLE PRECISION
FLOATING-POINT SUBTRACT

7 B 5 a4 ] 2 1 (4]
Binary Coding: [SRE[ 0 [0 [ o [ o[ o [1 ] 0]
Hex Coding: 82 IF SRE - 1
02 IF SRE = 0
Execution Time: See Table 2
Description:

The single precision operand A al TOS is sublracted from the
single precision operand B at NOS. The result is rounded to
obtain the final single precision result R which is returned to TOS.
The status bits S, Z, U and V are affected to report the sign of the
result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER
A [+— TOS —= R
B [=— NOS —==i (o3
c D
_k TJ Undefined

SMUL

SINGLE PRECISION
FLOATING-POINT MULTIPLY

7 6 5 4 3 2 1 0
Binary Coding:[SRE] 0 | 0 [0 [0 [ o [ 1 [ 1|
Hex Coding: 83 IF SRE = 1
03 IF SRE = 0
Execution Time: See Table 2
Description:

The single precision operand A from TCS is multiplied by the
single precision operand B from NOS. The result is rounded to
obtain the final single precision result R which is returned to TOS.
The status bits S, Z, U and V are affected to report the sign of the:
result, if the resull is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z. U, V. (D always zero.)

STACK CONTENTS

BEFORE

A

STACK CONTENT
BEFORE AFTER
A — TOS —= R
B re— NOS —= C
c D
D Undefined

B
Cc
D
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SDIV

SINGLE PRECISION
FLOATING-POINT DIVIDE

7 & B & 8 2 % 9o
Binary Coding: [SRE] 0 [0 [0 ] o[ 1[0 |0 |
Hex Coding: 84 IF SRE = 1
04 IF SRE = 0
Execution Time: See Table 2
Description:

The single precision operand B from NOS is divided by the
single precision operand A from TOS. The resull (quotient) is
rounded to obtain the final result R which is returned to TOS.
The status bits S, Z. D, U and V are affected to report the sign of
the result, if the result is zero, attempt to divide by zero, expo-
nent underflow and exponent overflow respectively.

Status Affected: S, Z, D, U. V

STACK CONTENTS
BEFORE AFTER
A 708 R (see note)
B NOS c
c D |
B D | Undefined |

Note: If exponent field of A is zero then R = B (Divide exception).

POPS

POP STACK SINGLE PRECISION

7 6 5 4 3 2 1 0
Binary Coding:[SRE[ 0 [0 [0 [ o [ 1 [ 1 [ 1
Hex Coding: 87 IF SRE =1
07 IFSRE=0
Execution Time: See Table 2
Description:

The single precision operand A is popped from the stack. The
internal stack control mechanism is such that A will be written at
the bottom of the stack. The status bits S and Z are affected to
report the sign of the new operand at TOS and if it is zero,
respectively. The status bits U, V and D will be cleared to zero.
Note that only the exponent field of the new TOS is checked for
zero, if it is zero status bit Z will set to 1.

Status Affected: S, Z. (U, V. D always zero.)

PTOD

PUSH STACK DOUBLE PRECISION

4 3 2 1 0
NERENEAEN

7 6 5
Binary Coding: SHE‘:‘ 0 | 1 I
Hex Coding: AE IF SRE = 1
2EIFSRE =0
Execution Time: See Table 2
Description:
The double precision operand A from the TOS is pushed back on
1o the stack. This is effectively a duplication of A into two con-
secutive stack locations. The status S and Z are affected o report
sign of the new TOS and if the new TOS is zero respectively. The
status bits U, V and D will be cleared 1o zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER

PTOS

PUSH STACK SINGLE PRECISION

2 3] 5 4 3 2 1 0
Binary Coding:[SRE[ 0 [ 0 [ 0 [0 [ 1 |1 [o]
Hex Coding: 86 IF SRE = 1
06 IF SRE = 0
Execution Time: See Table 2
Description:

This instruction effectively pushes the single precision operand
from TOS on 1o the stack. This amounts to duplicating the
operand at two locations in the stack. However, if the operand at
TOS priar 1o the PTOS command has only its exponent field as
zero, the new content of the TOS will all be zeroes. The contents
of NOS will be an exact copy of the old TOS. The status bits S
and Z are affected to report the sign of the new TOS and if the
content of TOS s zero, respectively. The status bits U, V and D
will be cleared 1o zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS
BEFORE

A

STACK CONTENTS
BEFORE AFTER
A |e—TO5—+] B
B e NO§ —= c
c D
D A |

B
C
D

Note: A* = A if Exponent field of A is no! zero.
A* = 0 it Exponent figld of A is zero.
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POPD

POP STACK DOUBLE PRECISION

7 & 6 4 @& @2 1 9,
Binary Coding: [SRE] 0 | 1 [ o [ 1 [ 1 [ 1 [ 1]
Hex Coding:  AF IF SRE — 1

9F IF SRE = 0
Execution Time: See Table 2
Description:

The double precision operand A is popped from the stack, The
internal stack control mechanism is such that A will be written at
the bottom of the stack, This operation has the same effect as
exchanging TOS and NOS. The slatus bils S and Z are affected to
report the sign of the new operand at TOS and if it is zero,
respectively. The status bits U, V and D will be cleared to zero.

Status Affected: S, Z (U, V and D always zero.)

STACK CONTENTS

BEFORE AFTER

XCHS

EXCHANGE TOS AND NOS
SINGLE-PRECISION

Binary Coding: [SRE| 0 [ 0 [: [ To] :) [o]

Hex Coding: 88 IF SRE = 1
08 IF SRE = 0
Execution Time: See Table 2

Description:

The single precision operand A at the TOS and the single preci-
sion operand B at the NOS are exchanged. After execution, Bis at
the TOS and A is at the NOS. All other operands are unchanged.

Status Affected: S, Z (U, V and D always zero.)

STACK CONTENTS

= ——

BEFORE AFTER
A (— TOS —=| B
B r— NOS —={ A
Cc Cc
D D

Am25LS138
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Figure 4, Am9512 to AmB085 Interface.
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Am8512
MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature —6510 +150°C
Vpp with Respect to Vss ~0.510 +15.0V
Vg with Respect to Vss -051o +7.0V
All Signal Voltages with Respect to Vgg -0.510 +7.0V

2.0wW

Power Dissipation (Package Limitation)
The prod i by this ion include internal circuitry designed to protect input devices from damaging accumulations of
slalic charge. It is suggaslad nwarmelsss that conventional precautions be observed during storage, handling and use in order to
avoid exposure to excessive vollages.

ELECTRICAL CHARACTERISTICS Over Operating Range (Note 1)

Parameters Description Test C: Min. Typ. Max. Units
VOH Output HIGH Voltage IOH = ~200uA 37 Volts
voL Output LOW Vollage 10L = 3.2mA 04 voits |
VIH Input HIGH Voltage 20 vee Volts
vIL Input LOW Voltage -05 08 Valts
X Input Load Current V8§ = VI = VCC =10 A
10z Data Bus Leakage 20y L] A
VO = VCC 10
Ta= +25C 50 %0 ]
icc VCC Supply Current Ta=0C F % mA
Ta = -55°C 100
Ta = +25°C 50 %0
DD VDD Supply Current Ta=0C 95 mA
Ty = -55C w0 |
co Output Capacitance 8 10 pF
cl Input Capacitance fe = 1.0MHz, Inputs = OV 5 8 pF
clo 1/0 Capacitance 10 12 pF

INPUT AND OUTPUT WAVEFORMS FOR AC TESTS

24

TEST POINTS

—
=T A,




SWITCHING CHARACTERISTICS

Am@512

Amg512DC Am9512-1DC
Parameters Description Min Max Min Max Units
TAPW EACK LOW Pulse Width 100 75 ns
TCDAR C/D to AD LOW Set-up Time o 0 ns
TCOW C/D to WR LOW Set-up Time o 0 ns
TCPH Clock Pulse HIGH Width 200 500 140 500 ns
TCPL Clock Pulse LOW Widih 240 160 ns
TCSP CS LOW to PAUSE LOW Delay (Note 5) 150 100 ns
TCSR TS 1o AD LOW Set-up Time 0 o ns
TCSW TS LOW to WR LOW Set-up Time 0 0 ns
TCY Clock Period 480 5000 320 2000 ns
TOW Data Valid to WR HIGH Delay 150 100 ns
TEAE EACK LOW to END LOW Delay 200 175 ns.
TEHPHR | END HIGH to PAUSE HIGH Data Read when Busy 5.5TCY+300 5.5TCY+200 ns
TEHPHW | END HIGH to PAUSE HIGH Write when Busy 200 175 ns
TEPW END HIGH Pulse Width 400 300 ns
TEX Execution Time Sea Table 2 ns
TOP Data Bus Output Valid to PAUSE HIGH Delay 0 0 ns
B Data 35TCY+ STCY+ STCY+50 | 55TCY+200
R me Lemealimmpealeel -
P ata See Table 2
i ol e S glxlus 15TCY 150 | 35TCY+300 | 157CV+50] 38TCY+200 |
TPPWW | PAUSE LOW Pulse Width Write when Not Busy \ TCSW+50 | TCSW+50 ns
TPPWWE | PAUSE LOW Pulse Width Write when Busy See Table 2 ns
TPA PAUSE HIGH to Aead HIGH Hold Time 0 [ ns
TPW PAUSE HIGH to Write HIGH Hold Time 0 o ns
TRCD RO HIGH 1o G/D Hold Time 0 0 ns
TRCS RD HIGH to TS HIGH Hold Time 0 0 ns
TRO 'RD LOW to Data Bus On Delay 50 50 ns
TRZ 'RD HIGH 1o Data Bus Off Delay 50 200 50 150 ns
TSAPW | SVACK LOW Pulse Widih 100 7% ns
TSAR SVACK LOW 1o SVREQ LOW Delay 300 200 ns
TWCD WH HIGH to G/D Hold Time 60 30 ns
TWCS WA HIGH 1o GS HIGH Hald Time 60 30 ns
TWD ‘WH HIGH lo Data Bus Hold Time 20 20 ns
NOTES:

and nominal processing parameters.

LodL

Switching parameters are listed in alphabetical order.
Tes! conditions assume transition times of 20ns or less, oul-

. Typical values are for Tp = 25°C, nominal supply voltages

put loading of one TTL gate plus 100pF and timing reference
levels of 0.8V and 2.0V.

4. END HIGH pulse width is specified for EACK tied to VSS.

Otherwise TEAE applies.

o n

Command Execution Times table).

~

high.

PAUSE is pulled low for both command and data operations.
TEX is the execution time of the current command (see the

PAUSE will go low at this pointif TS is low and BD and WH are
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TIMING DIAGRAMS

READ OPERATION

TCY.

PAUSE

— |—710pr

po-o1

DATA
VALID

—f  j—TcoR
| 8
L \ j
4§
| fe—10sn | TR [TTRes
\
At
TReo
: NOTE7
—_— o e
00-07 o K
VALID

MOS-209
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Am9512

TIMING DIAGRAMS (Cont.)

OPERAND ENTRY

I s W e Tl
- N, AT\

[=—TCSW -—rwcu-—-‘

i

L TPRWW
FAUSE L7
o
=
0ATA
we m X[, X

TCow

MOS-210

COMMAND OR DATA WRITE WHEN Am9512 IS BUSY

! TPRPWWE '
o \ ! ,é NOTE 7

TCOW e el — TWCD

5— TEMPHW —————=

MOS-211
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TIMING DIAGRAMS (Cont.)

COMMAND INITIATION

LT

W \r_"_/

TesW f— rwcn;—‘

=\ 7

TSP e . r—nw-

PAUSE
i ow—of  |e—rwp NOTE?

- 1+

o007 ﬂ DATA VALID x
J

f= TWeo —‘

TEAE —|
TAPW ——

TEX

SVAEG

TSAS
TSAPW —=|

o

MOS-212
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APPENDIX C DESIGNER'S CHECKLIST

The interfaces 1o the Am8511A and Am9512 are very similar.

Most the common problems are shared by the two devices. The

following problems usually occur due to the user's insufficient

understanding of the data sheel:

1. BOB5A Systems. The most common error is that the user ties
the PAUSE output directly to the READY input. The BO8SA
READY sampling time is such that when the PAUSE comes
out of the Am9511A, the 80B5A has already passed the deci-
sion point for going inte the WAIT State. The observed
symplom is that the user will read the contents of the Com-
mand Register after a command has been issued. The solu-
tionis to use a flip-flop to advance the effective PAUSE by one
clock period whenever there is an Am9511A access. This
problem does not apply to the Am9512 since the Am9512 was
designed for the BOB5A. (Am9511A was designed for the
BOBOA).

Z80 Systems. The most common liming violation is the Chip
Selecl to Read time. Many Z80 users derive the Chip Select
for the Am@511A/12 from an address decoder strobed by
IORQ. The Readinput of the Am9511A/12 comes directly from
RD. Since TORQ and AD are initiated simultaneously from the
Z80, the Chip Select will reach the Am9511A/12 later than the
D signal by the propagalion delay time of the address de-
coder. This violates the Chip Select to Read set-up time of
Ons. The solution to this problem is that IORQ should strobe
the AD signal instead of the chip select decoder. For the
Am9512, the PAUSE should also be gated with IDRQ.

BOBOA Systems. The 8080A interface lo the Am9512 requires
the PAUSE output be gated with IOR or IOW because the

]

o

>

o

o

~

PAUSE on the Am8512 follows the Chip Select inputs. In a
typical BOBOA system, Chip Select is derived from a straight
address decode. If the PAUSE outputis not gated, the PAUSE
output will come out during a memory access whose ad-
dress corresponds to the /O address and the system will be
hung up.

6800 Systems. The most common error is the failure to put the
system into a WAIT State. The symptom s the same as
described in the 8085A systems. The solution requires a one-
shot instead of the flip-flop because of the lack of suitable
clock edges to trigger the flip-flops in a 6800 system,

PlAs. Some users try to interface a MBB00-type microproces-
sor (6502, 6800, 6809) with the Am9511A/12 through a
Peripheral Interface Adapter. The most common error is the
fallure to satisty the WR HIGH to TS HIGH (or C/D) hold time
requirement for the device.

. WAIT State Requirement. Some users take the Chip Select of

the Am9511Ato set a flip-flop which causes the CPU to go into
aWAIT State. The PAUSE signalis then supposed to reset the
flip-tlop. This method will fail for some Am9511A's because the
minimum PAUSE pulse width during a Write cycle is Ons. That
is, there may be no PAUSE signal during a Write cycle to reset
the flip-flop.

END Signal. For the Am8511A the END signal Is asserted
Low. For the Am9512 the END signal is asserted High.
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